5,508 research outputs found
Ballistic Thermal Rectification in Asymmetric Three-Terminal Mesoscopic Dielectric Systems
By coupling the asymmetric three-terminal mesoscopic dielectric system with a
temperature probe, at low temperature, the ballistic heat flux flow through the
other two asymmetric terminals in the nonlinear response regime is studied
based on the Landauer formulation of transport theory. The thermal
rectification is attained at the quantum regime. It is a purely quantum effect
and is determined by the dependence of the ratio
on , the phonon's frequency.
Where and are respectively the
transmission coefficients from two asymmetric terminals to the temperature
probe, which are determined by the inelastic scattering of ballistic phonons in
the temperature probe. Our results are confirmed by extensive numerical
simulations.Comment: 10 pages, 4 figure
Identifying the baryons observed by LHCb as -wave baryons
We systematically study mass spectra and decay properties of -wave
baryons of the flavor , using the methods
of QCD sum rules and light-cone sum rules within the framework of heavy quark
effective theory. Our results suggest that the three excited baryons
recently observed by LHCb can be well explained as -wave
baryons: the and are partner states of and respectively, both of which contain one -mode
orbital excitation; the has , and also contains
one -mode orbital excitation. We propose to search for another
-wave state of in the
mass spectral in future experiments. Its mass is about MeV
larger than the , and its width is about
MeV.Comment: 16 pages, 1 figure, 3 tables, accepted by PR
Characterization of a Novel ArsR-Like Regulator Encoded by Rv2034 in Mycobacterium tuberculosis
The genome of Mycobacterium tuberculosis, the causative agent of tuberculosis, encodes a large number of putative transcriptional regulators. However, the identity and target genes of only a few of them have been clearly identified to date. In a recent study, the ArsR family regulator Rv2034 was characterized as a novel positive regulator of phoP. In the current study, we characterized the auto-repressive capabilities of Rv2034 and identified several residues in the protein critical for its DNA binding activities. We also provide evidence that Rv2034 forms dimers in vitro. Furthermore, by using DNaseI footprinting assays, a palindromic sequence was identified as its binding site. Notably, we found that the dosR promoter region contains the binding motif for Rv2034, and that Rv2034 positively regulates the expression of the dosR gene. The potential roles of Rv2034 in the regulation of lipid metabolism and hypoxic adaptation are discussed
Multi-Trace Superpotentials vs. Matrix Models
We consider N = 1 supersymmetric U(N) field theories in four dimensions with
adjoint chiral matter and a multi-trace tree-level superpotential. We show that
the computation of the effective action as a function of the glueball
superfield localizes to computing matrix integrals. Unlike the single-trace
case, holomorphy and symmetries do not forbid non-planar contributions.
Nevertheless, only a special subset of the planar diagrams contributes to the
exact result. Some of the data of this subset can be computed from the large-N
limit of an associated multi-trace Matrix model. However, the prescription
differs in important respects from that of Dijkgraaf and Vafa for single-trace
superpotentials in that the field theory effective action is not the derivative
of a multi-trace matrix model free energy. The basic subtlety involves the
correct identification of the field theory glueball as a variable in the Matrix
model, as we show via an auxiliary construction involving a single-trace matrix
model with additional singlet fields which are integrated out to compute the
multi-trace results. Along the way we also describe a general technique for
computing the large-N limits of multi-trace Matrix models and raise the
challenge of finding the field theories whose effective actions they may
compute. Since our models can be treated as N = 1 deformations of pure N =2
gauge theory, we show that the effective superpotential that we compute also
follows from the N = 2 Seiberg-Witten solution. Finally, we observe an
interesting connection between multi-trace local theories and non-local field
theory.Comment: 35 pages, LaTeX, 6 EPS figures. v2: typos fixed, v3: typos fixed,
references added, Sec. 5 added explaining how multi-trace theories can be
linearized in traces by addition of singlet fields and the relation of this
approach to matrix model
- …