2 research outputs found
Photoreceptor-Derived Activin Promotes Dendritic Termination and Restricts the Receptive Fields of First-Order Interneurons in Drosophila
SummaryHow neurons form appropriately sized dendritic fields to encounter their presynaptic partners is poorly understood. The Drosophila medulla is organized in layers and columns and innervated by medulla neuron dendrites and photoreceptor axons. Here, we show that three types of medulla projection (Tm) neurons extend their dendrites in stereotyped directions and to distinct layers within a single column for processing retinotopic information. In contrast, the Dm8 amacrine neurons form a wide dendritic field to receive ∼16 R7 photoreceptor inputs. R7- and R8-derived Activin selectively restricts the dendritic fields of their respective postsynaptic partners, Dm8 and Tm20, to the size appropriate for their functions. Canonical Activin signaling promotes dendritic termination without affecting dendritic routing direction or layer. Tm20 neurons lacking Activin signaling expanded their dendritic fields and aberrantly synapsed with neighboring photoreceptors. We suggest that afferent-derived Activin regulates the dendritic field size of their postsynaptic partners to ensure appropriate synaptic partnership
The neural substrate of spectral preference in Drosophila
Drosophila vision is mediated by inputs from three types of photoreceptor neurons; R1–R6 mediate achromatic motion detection, while R7 and R8 constitute two chromatic channels. Neural circuits for processing chromatic information are not known. Here, we identified the first-order interneurons downstream of the chromatic channels. Serial EM revealed that small-field projection neurons Tm5 and Tm9 receive direct synaptic input from R7 and R8, respectively, and indirect input from R1–R6, qualifying them to function as color-opponent neurons. Wide-field Dm8 amacrine neurons receive input from 13–16 UV-sensing R7s and provide output to projection neurons. Using a combinatorial expression system to manipulate activity in different neuron subtypes, we determined that Dm8 neurons are necessary and sufficient for flies to exhibit phototaxis toward ultraviolet instead of green light. We propose that Dm8 sacrifices spatial resolution for sensitivity by relaying signals from multiple R7s to projection neurons, which then provide output to higher visual centers