39 research outputs found

    SMAD3 deficiency promotes vessel wall remodeling, collagen fiber reorganization and leukocyte infiltration in an inflammatory abdominal aortic aneurysm mouse model

    Get PDF
    TGF-beta signaling plays critical roles in the pathogenesis of aneurysms; however, it is still unclear whether its role is protective or destructive. In this study, we investigate the role of SMAD3 in the pathogenesis of calcium chloride (CaCl2)-induced abdominal aortic aneurysms (AAA) in Smad3(-/-), Smad3(+/-) and Smad3(+/+) mice. We find that loss of SMAD3 drastically increases wall thickening of the abdominal aorta. Histological analyses show significant vessel wall remodeling with elastic fiber fragmentation. Remarkably, under polarized light, collagen fibers in the hyperplastic adventitia of Smad3(-/-) mice show extensive reorganization accompanied by loosely packed thin and radial collagen fibers. The expressions of matrix metalloproteinases including MMP2, MMP9, and MMP12 and infiltration of macrophage/T cells are drastically enhanced in the vascular wall of Smad3(-/-) mice. We also observe marked increase of NF-kappaB and ERK1/2 signaling as well as the expression of nuclear Smad2, Smad4 and TGF-beta1 in the vessel wall of Smad3(-/-) mice. In addition, we find that SMAD3 expression is reduced in the dedifferentiated medial smooth muscle-like cells of human AAA patients. These findings provide direct in vivo evidence to support the essential roles of SMAD3 in protecting vessel wall integrity and suppressing inflammation in the pathogenesis of AAAs

    YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation

    Get PDF
    Yin Yang 1 (YY1) regulates gene transcription in a variety of biological processes. In this study, we aim to determine the role of YY1 in vascular smooth muscle cell (VSMC) phenotypic modulation both in vivo and in vitro. Here we show that vascular injury in rodent carotid arteries induces YY1 expression along with reduced expression of smooth muscle differentiation markers in the carotids. Consistent with this finding, YY1 expression is induced in differentiated VSMCs in response to serum stimulation. To determine the underlying molecular mechanisms, we found that YY1 suppresses the transcription of CArG box-dependent SMC-specific genes including SM22α, SMα-actin and SMMHC. Interestingly, YY1 suppresses the transcriptional activity of the SM22α promoter by hindering the binding of serum response factor (SRF) to the proximal CArG box. YY1 also suppresses the transcription and the transactivation of myocardin (MYOCD), a master regulator for SMC-specific gene transcription by binding to SRF to form the MYOCD/SRF/CArG box triad (known as the ternary complex). Mechanistically, YY1 directly interacts with MYOCD to competitively displace MYOCD from SRF. This is the first evidence showing that YY1 inhibits SMC differentiation by directly targeting MYOCD. These findings provide new mechanistic insights into the regulatory mechanisms that govern SMC phenotypic modulation in the pathogenesis of vascular diseases

    Identification of antibodies with non-overlapping neutralization sites that target coxsackievirus A16

    Get PDF
    手足口病(Hand, Foot and Mouth Disease,HFMD)是一种由人肠道病毒引起的全球性传染病,主要发生于5岁以下的婴幼儿。2月5日,我校夏宁邵教授团队在《细胞》子刊《细胞•宿主与微生物》(Cell Host & Microbe)上在线发表题为“Identification of antibodies with non-overlapping neutralization sites that target coxsackievirus A16”的研究论文。该研究首次揭示了手足口病主要病原体柯萨奇病毒A组16型(CVA16)三种衣壳颗粒形式与三种不同类型的治疗性中和抗体的全面相互作用细节和非重叠的中和表位结构信息,阐明了CVA16成熟颗粒是疫苗候选主要保护性免疫原的理论基础,建立了可指导疫苗研制的免疫原特异检测方法,为CVA16疫苗及抗病毒药物研究提供关键基础。我校夏宁邵教授、李少伟教授、程通副教授和美国加州大学洛杉矶分校纳米系统研究所Z. Hong Zhou(周正洪)教授为该论文的共同通讯作者。我校博士生何茂洲、徐龙发博士后、郑清炳高级工程师、博士生朱瑞和尹志超为该论文共同第一作者。【Abstract】Hand, foot, and mouth disease is a common childhood illness primarily caused by coxsackievirus A16 (CVA16), for which there are no current vaccines or treatments. We identify three CVA16-specific neutralizing monoclonal antibodies (nAbs) with therapeutic potential: 18A7, 14B10, and NA9D7. We present atomic structures of these nAbs bound to all three viral particle forms—the mature virion, A-particle, and empty particle—and show that each Fab can simultaneously occupy the mature virion. Additionally, 14B10 or NA9D7 provide 100% protection against lethal CVA16 infection in a neonatal mouse model. 18A7 binds to a non-conserved epitope present in all three particles, whereas 14B10 and NA9D7 recognize broad protective epitopes but only bind the mature virion. NA9D7 targets an immunodominant site, which may overlap the receptor-binding site. These findings indicate that CVA16 vaccines should be based on mature virions and that these antibodies could be used to discriminate optimal virion-based immunogens.This work was supported by grants from the Major Program of National Natural Science Foundation of China ( 81991490 ), the National Science and Technology Major Projects for Major New Drugs Innovation and Development ( 2018ZX09711003-005-003 ), the National Science and Technology Major Project of Infectious Diseases ( 2017ZX10304402-002-003 ), the National Natural Science Foundation of China ( 31670933 and 81801646 ), the China Postdoctoral Science Foundation ( 2018M640599 and 2019T120557 ), the Principal Foundation of Xiamen University ( 20720190117 ), and the National Institutes of Health ( R37-GM33050 , GM071940 , DE025567 , and AI094386 ). 该研究获得了国家自然科学基金、新药创制国家科技重大专项、传染病防治国家科技重大专项和美国国立卫生研究院基金的资助

    Atomic structures of enterovirus D68 in complex with two monoclonal antibodies define distinct mechanisms of viral neutralization

    Get PDF
    11月5日,《自然》子刊《自然•微生物学》(Nature Microbiology)在线刊出了我校夏宁邵教授团队发表的题为“Atomic Structures of Enterovirus D68 in Complex with Two Monoclonal Antibodies Define Distinct Mechanisms of Viral Neutralization”的研究论文。这是夏宁邵教授团队在《自然•通讯》(Nature Communications,2017)、《科学•进展》(Science Advances,2018)上发表手足口病重要病原体CVA6、CVA10研究论文之后的又一项关于肠道病毒的重要研究成果。该研究通过解析肠道病毒D组68型(EV-D68)不同类型病毒颗粒及其免疫复合物的高分辨率结构,系统阐明了EV-D68病毒的生活周期及各时期的病毒中和机制,进一步完善了小RNA病毒的吸附入胞及感染机制理论,为EV-D68新型疫苗、抗病毒治疗药物的研发提供重要的理论指导。该研究依托电镜技术平台,解析了EV-D68病毒生活周期中的三种代表性颗粒成熟颗粒、脱衣壳中间态和前体病毒衣壳的近原子分辨率结构,阐明了三种病毒颗粒间的结构差异,以及成熟颗粒转变为脱衣壳中间态的分子机制。夏宁邵教授、李少伟教授、程通副教授和美国国立卫生研究院(NIH)高级研究员Barney Graham博士为该论文的共同通讯作者。郑清炳工程师、博士生朱瑞、博士后徐龙发、博士生何茂洲和美国加州大学圣地亚哥分校颜晓东博士为该论文共同第一作者。【Abstract】Enterovirus D68 (EV-D68) undergoes structural transformation between mature, cell-entry intermediate (A-particle) and empty forms throughout its life cycle. Structural information for the various forms and antibody-bound capsids will facilitate the development of effective vaccines and therapeutics against EV-D68 infection, which causes childhood respiratory and paralytic diseases worldwide. Here, we report the structures of three EV-D68 capsid states representing the virus at major phases. We further describe two original monoclonal antibodies (15C5 and 11G1) with distinct structurally defined mechanisms for virus neutralization. 15C5 and 11G1 engage the capsid loci at icosahedral three-fold and five-fold axes, respectively. To block viral attachment, 15C5 binds three forms of capsids, and triggers mature virions to transform into A-particles, mimicking engagement by the functional receptor ICAM-5, whereas 11G1 exclusively recognizes the A-particle. Our data provide a structural and molecular explanation for the transition of picornavirus capsid conformations and demonstrate distinct mechanisms for antibody-mediated neutralization.This work was supported by a grant from the National Science and Technology Major Projects for Major New Drugs Innovation and Development (no. 2018ZX09711003-005-003), the National Science and Technology Major Project of Infectious Diseases (no. 2017ZX10304402-002-003), the National Natural Science Foundation of China (no. 81401669 and 81801646) and the Natural Science Foundation of Fujian Province (no. 2015J05073). This work was supported in part by funding by the National Institutes of Health (grants R37-GM33050, GM071940, DE025567 and AI094386). We acknowledge the use of instruments at the Electron Imaging Center for Nanomachines supported by UCLA and by instrumentation grants from the NIH (1S10RR23057 and 1U24GM116792) and NSF (DBI-1338135 and DMR-1548924). 该研究获得了国家自然科学基金、新药创制国家科技重大专项、传染病防治国家科技重大专项和美国国立卫生研究院基金的资助

    Near-atomic cryo-electron microscopy structures of varicella-zoster virus capsids

    Get PDF
    VZV是一种广泛存在并且具有高度传染性的人类α-疱疹病毒。初次感染VZV可导致水痘,人群普遍易感(感染率约为61%~100%)。该病毒可在背根神经节潜伏感染,持续终生。夏宁邵教授团队长期开展VZV相关基础与新型疫苗研究,通过系统和精细探索建立了高效的VZV规模化培养和病毒颗粒纯化技术体系,成功获得高质量的VZV颗粒样品。首次揭示了疱疹病毒α家族的水痘-带状疱疹病毒(VZV)不同类型核衣壳的近原子分辨率结构,阐明了VZV核衣壳不同组成蛋白的相互作用网络与衣壳装配机制,可为进一步开展新型载体疫苗设计及抗病毒药物等研究提供重要支持。 我校博士后王玮、高级工程师郑清炳、博士生潘德全和俞海副教授为该论文共同第一作者,我校夏宁邵教授、程通副教授、李少伟教授以及美国罗格斯大学朱桦(Hua Zhu)教授、加利福尼亚大学洛杉矶分校周正洪(Z. Hong Zhou)教授为该论文的共同通讯作者。【Abstract】Varicella-zoster virus (VZV) is a medically important human herpesvirus that causes chickenpox and shingles, but its cell-associated nature has hindered structure studies. Here we report the cryo-electron microscopy structures of purified VZV A-capsid and C-capsid, as well as of the DNA-containing capsid inside the virion. Atomic models derived from these structures show that, despite enclosing a genome that is substantially smaller than those of other human herpesviruses, VZV has a similarly sized capsid, consisting of 955 major capsid protein (MCP), 900 small capsid protein (SCP), 640 triplex dimer (Tri2) and 320 triplex monomer (Tri1) subunits. The VZV capsid has high thermal stability, although with relatively fewer intra- and inter-capsid protein interactions and less stably associated tegument proteins compared with other human herpesviruses. Analysis with antibodies targeting the N and C termini of the VZV SCP indicates that the hexon-capping SCP—the largest among human herpesviruses—uses its N-terminal half to bridge hexon MCP subunits and possesses a C-terminal flexible half emanating from the inner rim of the upper hexon channel into the tegument layer. Correlation of these structural features and functional observations provide insights into VZV assembly and pathogenesis and should help efforts to engineer gene delivery and anticancer vectors based on the currently available VZV vaccine.This research was supported by grants from the National Science and Technology Major Projects for Major New Drugs Innovation and Development (no. 2018ZX09711003-005-003), the National Science and Technology Major Project of Infectious Diseases (no. 2017ZX10304402), the National Natural Science Foundation of China (no. 81871648, 81601762), the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences (no. 2019RU022) and the US National Institutes of Health (DE025567/028583). 该研究获得了国家自然科学基金、新药创制国家科技重大专项和传染病防治国家科技重大专项等资助

    Atomic structures of Coxsackievirus A6 and its complex with a neutralizing antibody

    Get PDF
    手足口病是一种由人肠道病毒引起的全球性传染病,主要发生于5岁以下的婴幼儿,严重危害公众健康。根据获得的手足口病流行病学和病原学调查数据,目前认为CVA6与EV71和CVA16一样应作为优先的手足口病疫苗预防对象,亟需研制有效的预防和治疗方法。然而令人遗憾的是,目前对于CVA6的基础病毒学特别是结构生物学知识均缺乏足够了解,严重制约了相关研究的有效开展。 夏宁邵教授团队研究首次揭示了手足口病重要病原体柯萨奇病毒A组6型(CVA6)的病毒颗粒及其与中和抗体复合物的精确三维结构,为新型疫苗和治疗药物的研制提供了重要的理论基础。这项研究发现并精确描绘了CVA6的病毒颗粒及其与优势中和抗体的结构特征,首次完成了对CVA6的高精度“成像”,为新型疫苗和治疗药物研制提供了关键基础。 该研究工作在厦门大学分子疫苗学和分子诊断学国家重点实验室、国家传染病诊断试剂与疫苗工程技术研究中心科研平台完成。夏宁邵教授、颜晓东博士、程通副教授为该研究论文的共同通讯作者。颜晓东博士来自美国加州大学圣地亚哥分校,同时受聘为我校双聘教授。共同第一作者为徐龙发博士生、郑清炳工程师和李少伟教授。【Abstract】Coxsackievirus A6 (CVA6) has recently emerged as a major cause of hand, foot and mouth disease in children worldwide but no vaccine is available against CVA6 infections. Here, we demonstrate the isolation of two forms of stable CVA6 particles-procapsid and A-particle-with excellent biochemical stability and natural antigenicity to serve as vaccine candidates. Despite the presence (in A-particle) or absence (in procapsid) of capsid-RNA interactions, the two CVA6 particles have essentially identical atomic capsid structures resembling the uncoating intermediates of other enteroviruses. Our near-atomic resolution structure of CVA6 A-particle complexed with a neutralizing antibody maps an immune-dominant neutralizing epitope to the surface loops of VP1. The structure-guided cell-based inhibition studies further demonstrate that these loops could serve as excellent targets for designing anti-CVA6 vaccines.This work was supported by a grant from the National Natural Science Foundation of China (No. 31670933 and 81401669), the National Science and Technology Major Projects for Major New Drugs Innovation and Development (No. 2017ZX09101005-005-003), the National Science and Technology Major Project of Infectious Diseases (No. 2017ZX10304402-002-003) and the Natural Science Foundation of Fujian Province (No. 2015J05073). This work was also supported in part by funding to T.S.B. from the National Institutes of Health (Grant R37-GM33050). 研究工作也得到了国际病毒结构生物学权威专家美国加州大学洛杉矶分校周正洪教授的大力支持和帮助,获得了国家自然科学基金、新药创制国家科技重大专项、传染病防治国家科技重大专项和福建省自然科学基金的资助

    Chondrocyte miRNAs 221 and 483-5p respond to loss of matrix interaction by modulating proliferation and matrix synthesis.

    No full text
    AIM: The purpose of this study was to identify the microRNAs that regulate the response of chondrocytes to loss of matrix interaction. MATERIALS AND METHODS: MicroRNA and gene expression was compared in bovine cartilage and isolated chondrocytes using array analysis. Those microRNAs showing more than three-fold change in expression were verified by quantitative PCR after a stem-loop reverse transcription in bovine and human cartilage, and chondrocytes. Their function was investigated using target gene reporter construct expression, quantification of cell proliferation, and analysis of gene expression and matrix synthesis after transfection with microRNA mimics. RESULTS: Only four microRNAs were confirmed to have a greater than three-fold change in expression after isolation of bovine or human chondrocytes from their extracellular matrix; miRs-221, -222 and -21 showed increased expression and miR-483-5p showed decreased expression. Transfection with a miR-221 mimic was shown to suppress expression of the cyclin-dependent kinase inhibitor p27 leading to the stimulation of chondrocyte proliferation. Transfection of chondrocytes with a miR-483-5p mimic was shown to suppress several members of the mitogen activated protein kinase (MAPK) pathway; a likely explanation of the increased matrix production observed. CONCLUSIONS: microRNAs 221 and 483-5p respond to the loss of chondrocyte matrix interaction by respectively stimulating proliferation by suppression of inhibitors of cell division and suppression of matrix production possibly by release of inhibition of the MAPK pathway
    corecore