1,162 research outputs found

    Spin wave assisted current induced magnetic domain wall motion

    Full text link
    The interaction between the propagating spin waves and the current driven motion of a transverse domain wall in magnetic nanowires is studied by micromagnetic simulations. If the speed of domain walls due to current induced spin transfer torque is comparable to the velocity driven by spin waves, the speed of domain wall is improved by applying spin waves. The domain wall velocity can be manipulated by the frequency and amplitude of spin waves. The effect of spin waves is suppressed in the high current density regime in which the domain wall is mostly driven by current induced spin transfer torque

    Attenuation characteristics of spin pumping signal due to travelling spin waves

    Full text link
    The authors have investigated the contribution of the surface spin waves to spin pumping. A Pt/NiFe bilayer has been used for measuring spin waves and spin pumping signals simultaneously. The theoretical framework of spin pumping resulting from ferromagnetic resonance has been extended to incorporate spin pumping due to spin waves. Equations for the effective area of spin pumping due to spin waves have been derived. The amplitude of the spin pumping signal resulting from travelling waves is shown to decrease more rapidly with precession frequency than that resulting from standing waves and show good agreement with the experimental data

    Macroscopically degenerate localized zero-energy states of quasicrystalline bilayer systems in strong coupling limit

    Full text link
    When two identical two-dimensional (2D) periodic lattices are stacked in parallel after rotating one layer by a certain angle relative to the other layer, the resulting bilayer system can lose lattice periodicity completely and become a 2D quasicrystal. Twisted bilayer graphene with 30-degree rotation is a representative example. We show that such quasicrystalline bilayer systems generally develop macroscopically degenerate localized zero-energy states (ZESs) in strong coupling limit where the interlayer couplings are overwhelmingly larger than the intralayer couplings. The emergent chiral symmetry in strong coupling limit and aperiodicity of bilayer quasicrystals guarantee the existence of the ZESs. The macroscopically degenerate ZESs are analogous to the flat bands of periodic systems, in that both are composed of localized eigenstates, which give divergent density of states. For monolayers, we consider the triangular, square, and honeycomb lattices, comprised of homogenous tiling of three possible planar regular polygons: the equilateral triangle, square, and regular hexagon. We construct a compact theoretical framework, which we call the quasiband model, that describes the low energy properties of bilayer quasicrystals and counts the number of ZESs using a subset of Bloch states of monolayers. We also propose a simple geometric scheme in real space which can show the spatial localization of ZESs and count their number. Our work clearly demonstrates that bilayer quasicrystals in strong coupling limit are an ideal playground to study the intriguing interplay of flat band physics and the aperiodicity of quasicrystals.Comment: 5 pages, 4 figures + Supplementary Material (12 pages,5 figures
    corecore