65 research outputs found

    Direct observation of significant hot carrier cooling suppression in a two-dimensional silicon phononic crystal

    Get PDF
    Finding hot carrier cooling suppression in new material structures is fundamentally important for developing promising technological applications. These phenomenona have not been reported for crystalline silicon phononic crystals. Herein, we experimentally design two-dimensional (2D) silicon samples consisting of airy hole arrays in a crystalline silicon matrix. For reference, the determined hot carrier cooling times were 0.45 ps and 0.37 ps, respectively, at probe wavelengths of 1080 nm and 1100 nm. Surprisingly, when the 2D structured silicon possessed the properties of a phononic crystal, significant suppression of hot carrier cooling was observed. In these cases, the observed hot carrier cooling times were as long as 15.9 ps and 10.7 ps at probe wavelengths of 1080 nm and 1100 nm, respectively, indicating prolongation by orders of magnitude. This remarkable enhancement was also observed with other probe wavelengths. The present work presents experimental evidence for hot carrier cooling suppression in 2D silicon phononic crystals and opens opportunities for promising applications

    Comparative Transcriptomes Profiling of Photoperiod-sensitive Male Sterile Rice Nongken 58S During the Male Sterility Transition between Short-day and Long-day

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Photoperiod-sensitive genic male sterile (PGMS) rice, Nongken 58S, was discovered in 1973. It has been widely used for the production of hybrid rice, and great achievements have been made in improving rice yields. However, the mechanism of the male sterility transition in PGMS rice remains to be determined.</p> <p>Results</p> <p>To investigate the transcriptome during the male sterility transition in PGMS rice, the transcriptome of Nongken 58S under short-day (SD) and long-day (LD) at the glume primordium differentiation and pistil/stamen primordium forming stages was compared. Seventy-three and 128 differentially expressed genes (DEGs) were identified at the glume primordium differentiation and pistil/stamen primordium forming stages, respectively. Five and 22 genes were markedly up-regulated (≥ 5-fold), and two and five genes were considerably down-regulated (≥ 5-fold) under SD during the male sterility transition. Gene ontology annotation and pathway analysis revealed that four biological processes and the circadian rhythms and the flowering pathways coordinately regulated the male sterility transition. Further quantitative PCR analysis demonstrated that the circadian rhythms of <it>OsPRR1, OsPRR37, OsGI, Hd1, OsLHY </it>and <it>OsDof </it>in leaves were obviously different between Nongken 58S and Nongken 58 under LD conditions. Moreover, both <it>OsPRR37 </it>and <it>Hd1 </it>in the inflorescence displayed differences between Nongken 58S and Nongken 58 under both LD and SD conditions.</p> <p>Conclusion</p> <p>The results presented here indicate that the transcriptome in Nongken 58S was significantly suppressed under LD conditions. Among these DEGs, the circadian rhythm and the flowering pathway were involved in the male sterility transition. Furthermore, these pathways were coordinately involved in the male sterility transition in PGMS rice.</p

    A New Urban Functional Zone-Based Climate Zoning System for Urban Temperature Study

    No full text
    The urban heat island (UHI) effect has been recognized as one of the most significant terrestrial surface climate-related consequences of urbanization. However, the traditional definition of the urban&ndash;rural (UR) division and the newly established local climate zone (LCZ) classification for UHI and urban climate studies do not adequately express the pattern and intensity of UHI. Moreover, these definitions of UHI find it hard to capture the human activity-induced anthropogenic heat that is highly correlated with urban functional zones (UFZ). Therefore, in this study, with a comparison (theory, technology, and application) of the previous definition (UR and LCZ) of UHI and integration of computer programming technology, social sensing, and remote sensing, we develop a new urban functional zone-based urban temperature zoning system (UFZC). The UFZC system is generally a social-based, planning-oriented, and data-driven classification system associated with the urban function and temperature; it can also be effectively used in city management (e.g., urban planning and energy saving). Moreover, in the Beijing case, we tested the UFZC system and preliminarily analyzed the land surface temperature (LST) difference patterns and causes of the 11 UFZC types. We found that, compared to other UFZCs, the PGZ (perseveration green zone)-UFZC has the lowest LST, while the CBZ (center business district zone)-UFZC and GCZ (general commercial zone)-UFZC contribute the most and stable heat sources. This implies that reducing the heat generated by the function of commercial (and industrial) activities is an effective measure to reduce the UHI effect. We also proposed that multi-source temperature datasets with a high spatiotemporal resolution are needed to obtain more accurate results; thus providing more accurate recommendations for mitigating UHI effects. In short, as a new and finer urban temperature zoning system, although UFZC is not intended to supplant the UR and LCZ classifications, it can facilitate more detailed and coupled urban climate studies
    corecore