7 research outputs found

    Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration

    No full text
    Silencing and variegated transgene expression are poorly understood problems that can interfere with gene function studies in human embryonic stem cells (hESCs). We show that transgene expression (enhanced green fluorescent protein [EGFP]) from random integration sites in hESCs is affected by variegation and silencing, with only half of hESCs expressing the transgene, which is gradually lost after withdrawal of selection and differentiation. We tested the hypothesis that a transgene integrated into the adeno-associated virus type 2 (AAV2) target region on chromosome 19, known as the AAVS1 locus, would maintain transgene expression in hESCs. When we used AAV2 technology to target the AAVS1 locus, 4.16% of hESC clones achieved AAVS1-targeted integration. Targeted clones expressed Oct-4, stage-specific embryonic antigen-3 (SSEA3), and Tra-1-60 and differentiated into all three primary germ layers. EGFP expression from the AAVS1 locus showed significantly reduced variegated expression when in selection, with 90% ± 4% of cells expressing EGFP compared with 57% ± 32% for randomly integrated controls, and reduced tendency to undergo silencing, with 86% ± 7% hESCs expressing EGFP 25 days after withdrawal of selection compared with 39% ± 31% for randomly integrated clones. In addition, quantitative polymerase chain reaction analysis of hESCs also indicated significantly higher levels of EGFP mRNA in AAVS1-targeted clones as compared with randomly integrated clones. Transgene expression from the AAVS1 locus was shown to be stable during hESC differentiation, with more than 90% of cells expressing EGFP after 15 days of differentiation, as compared with ∼30% for randomly integrated clones. These results demonstrate the utility of transgene integration at the AAVS1 locus in hESCs and its potential clinical application

    Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling

    Get PDF
    Loss of G1/S control is a hallmark of cancer, and is often caused by inactivation of the retinoblastoma pathway. However, mouse embryonic fibroblasts lacking the retinoblastoma genes RB1, p107, and p130 (TKO MEFs) are still subject to cell cycle control: Upon mitogen deprivation, they enter and complete S phase, but then firmly arrest in G2. We now show that G2-arrested TKO MEFs have accumulated DNA damage. Upon mitogen readdition, cells resume proliferation, although only part of the damage is repaired. As a result, mitotic cells show chromatid breaks and chromatid cohesion defects. These aberrations lead to aneuploidy in the descendent cell population. Thus, our results demonstrate that unfavorable growth conditions can cause genomic instability in cells lacking G1/S control. This mechanism may allow premalignant tumor cells to acquire additional genetic alterations that promote tumorigenesis

    Maps of Constitutive-Heterochromatin Distribution for Four <i>Martes</i> Species (Mustelidae, Carnivora, Mammalia) Show the Formative Role of Macrosatellite Repeats in Interspecific Variation of Chromosome Structure

    No full text
    Constitutive-heterochromatin placement in the genome affects chromosome structure by occupying centromeric areas and forming large blocks. To investigate the basis for heterochromatin variation in the genome, we chose a group of species with a conserved euchromatin part: the genus Martes [stone marten (M. foina, 2n = 38), sable (M. zibellina, 2n = 38), pine marten (M. martes, 2n = 38), and yellow-throated marten (M. flavigula, 2n = 40)]. We mined the stone marten genome for the most abundant tandem repeats and selected the top 11 macrosatellite repetitive sequences. Fluorescent in situ hybridization revealed distributions of the tandemly repeated sequences (macrosatellites, telomeric repeats, and ribosomal DNA). We next characterized the AT/GC content of constitutive heterochromatin by CDAG (Chromomycin A3-DAPI-after G-banding). The euchromatin conservatism was shown by comparative chromosome painting with stone marten probes in newly built maps of the sable and pine marten. Thus, for the four Martes species, we mapped three different types of tandemly repeated sequences critical for chromosome structure. Most macrosatellites are shared by the four species with individual patterns of amplification. Some macrosatellites are specific to a species, autosomes, or the X chromosome. The variation of core macrosatellites and their prevalence in a genome are responsible for the species-specific variation of the heterochromatic blocks
    corecore