6,958 research outputs found

    Disentangled Variational Auto-Encoder for Semi-supervised Learning

    Full text link
    Semi-supervised learning is attracting increasing attention due to the fact that datasets of many domains lack enough labeled data. Variational Auto-Encoder (VAE), in particular, has demonstrated the benefits of semi-supervised learning. The majority of existing semi-supervised VAEs utilize a classifier to exploit label information, where the parameters of the classifier are introduced to the VAE. Given the limited labeled data, learning the parameters for the classifiers may not be an optimal solution for exploiting label information. Therefore, in this paper, we develop a novel approach for semi-supervised VAE without classifier. Specifically, we propose a new model called Semi-supervised Disentangled VAE (SDVAE), which encodes the input data into disentangled representation and non-interpretable representation, then the category information is directly utilized to regularize the disentangled representation via the equality constraint. To further enhance the feature learning ability of the proposed VAE, we incorporate reinforcement learning to relieve the lack of data. The dynamic framework is capable of dealing with both image and text data with its corresponding encoder and decoder networks. Extensive experiments on image and text datasets demonstrate the effectiveness of the proposed framework.Comment: 6 figures, 10 pages, Information Sciences 201

    Multi-Cell Massive MIMO in LoS

    Full text link
    We consider a multi-cell Massive MIMO system in a line-of-sight (LoS) propagation environment, for which each user is served by one base station, with no cooperation among the base stations. Each base station knows the channel between its service antennas and its users, and uses these channels for precoding and decoding. Under these assumptions we derive explicit downlink and uplink effective SINR formulas for maximum-ratio (MR) processing and zero-forcing (ZF) processing. We also derive formulas for power control to meet pre-determined SINR targets. A numerical example demonstrating the usage of the derived formulas is provided.Comment: IEEE Global Communications Conference (GLOBECOM) 201

    Intangible Assets: How the Interaction of Computers and Organizational Structure Affects Stock Market Valuations

    Get PDF
    macroeconomics, Intangible Assets, Interaction, Computers, Organizational Structure, Stock Market Valuations
    • …
    corecore