108 research outputs found

    Cardiac-derived CTRP9 protects against myocardial ischemia/reperfusion injury via calreticulin-dependent inhibition of apoptosis.

    Get PDF
    Cardiokines play an essential role in maintaining normal cardiac functions and responding to acute myocardial injury. Studies have demonstrated the heart itself is a significant source of C1q/TNF-related protein 9 (CTRP9). However, the biological role of cardiac-derived CTRP9 remains unclear. We hypothesize cardiac-derived CTRP9 responds to acute myocardial ischemia/reperfusion (MI/R) injury as a cardiokine. We explored the role of cardiac-derived CTRP9 in MI/R injury via genetic manipulation and a CTRP9-knockout (CTRP9-KO) animal model. Inhibition of cardiac CTRP9 exacerbated, whereas its overexpression ameliorated, left ventricular dysfunction and myocardial apoptosis. Endothelial CTRP9 expression was unchanged while cardiomyocyte CTRP9 levels decreased after simulated ischemia/`reperfusion (SI/R) in vitro. Cardiomyocyte CTRP9 overexpression inhibited SI/R-induced apoptosis, an effect abrogated by CTRP9 antibody. Mechanistically, cardiac-derived CTRP9 activated anti-apoptotic signaling pathways and inhibited endoplasmic reticulum (ER) stress-related apoptosis in MI/R injury. Notably, CTRP9 interacted with the ER molecular chaperone calreticulin (CRT) located on the cell surface and in the cytoplasm of cardiomyocytes. The CTRP9-CRT interaction activated the protein kinase A-cAMP response element binding protein (PKA-CREB) signaling pathway, blocked by functional neutralization of the autocrine CTRP9. Inhibition of either CRT or PKA blunted cardiac-derived CTRP9\u27s anti-apoptotic actions against MI/R injury. We further confirmed these findings in CTRP9-KO rats. Together, these results demonstrate that autocrine CTRP9 of cardiomyocyte origin protects against MI/R injury via CRT association, activation of the PKA-CREB pathway, ultimately inhibiting cardiomyocyte apoptosis

    Increased expression of pigment epithelium-derived factor in aged mesenchymal stem cells impairs their therapeutic efficacy for attenuating myocardial infarction injury.

    Get PDF
    AIMS: Mesenchymal stem cells (MSCs) can ameliorate myocardial infarction (MI) injury. However, older-donor MSCs seem less efficacious than those from younger donors, and the contributing underlying mechanisms remain unknown. Here, we determine how age-related expression of pigment epithelium-derived factor (PEDF) affects MSC therapeutic efficacy for MI. METHODS AND RESULTS: Reverse transcriptase-polymerized chain reaction and enzyme-linked immunosorbent assay analyses revealed dramatically increased PEDF expression in MSCs from old mice compared to young mice. Morphological and functional experiments demonstrated significantly impaired old MSC therapeutic efficacy compared with young MSCs in treatment of mice subjected to MI. Immunofluorescent staining demonstrated that administration of old MSCs compared with young MSCs resulted in an infarct region containing fewer endothelial cells, vascular smooth muscle cells, and macrophages, but more fibroblasts. Pigment epithelium-derived factor overexpression in young MSCs impaired the beneficial effects against MI injury, and induced cellular profile changes in the infarct region similar to administration of old MSCs. Knocking down PEDF expression in old MSCs improved MSC therapeutic efficacy, and induced a cellular profile similar to young MSCs administration. Studies in vitro showed that PEDF secreted by MSCs regulated the proliferation and migration of cardiac fibroblasts. CONCLUSIONS: This is the first evidence that paracrine factor PEDF plays critical role in the regulatory effects of MSCs against MI injury. Furthermore, the impaired therapeutic ability of aged MSCs is predominantly caused by increased PEDF secretion. These findings indicate PEDF as a promising novel genetic modification target for improving aged MSC therapeutic efficacy

    Synthesis and Mechanism of Tetracalcium Phosphate from Nanocrystalline Precursor

    Get PDF
    Tetracalcium phosphate (TTCP, Ca4(PO4)2O) was prepared by the calcination of coprecipitated mixture of nanoscale hydroxyapatite (HA, Ca10(PO4)6(OH)2) and calcium carbonate crystal (CaCO3), followed by cooling in the air or furnace. The effect of calcination temperature on crystal structure and phase composition of the coprecipitation mixture was characterized by transmission electron microscope (TEM), thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and Raman spectroscopy (RS). The obtained results indicated that the synthesized mixture consisted of nanoscale HA and CaCO3 with uniform distribution throughout the composite. TTCP was observed in the air quenching samples when the calcination temperature was above 1185°C. With the increase of the calcination temperature, the amount of the intermediate products in the air quenching samples decreased and cannot be detected when calcination temperature reached 1450°C. Unexpectedly, the mixture of HA and calcium oxide was observed in the furnace cooling samples. Clearly, the calcination temperature and cooling methods are critical for the synthesis of high-purity TTCP. The results indicate that the nanosize of precursors can decrease the calcination temperature, and TTCP can be calcinated by low temperature

    Safety of HIF prolyl hydroxylase inhibitors for anemia in dialysis patients: a systematic review and network meta-analysis

    Get PDF
    Aim: We performed a systematic review and network meta-analysis evaluating the safety and efficacy of hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) among dialysis chronic kidney disease patients.Methods: Safety was evaluated with any adverse events (AEs), serious adverse events (SAEs), and 12 common events. Efficacy was mainly analyzed with hemoglobin response. All reported results were summarized using mean difference and risk ratio (RR) with 95% confidence interval (CI). Publication bias was assessed through funnel plots.Results: Twenty trials (19 studies) with 14,947 participants were included, comparing six HIF-PHIs with erythropoiesis-stimulating agents (ESAs). No significant differences were indicated in overall AEs and SAEs between each HIF-PHI and ESA. The occurrence of gastrointestinal disorder was higher in enarodustat and roxadustat than in ESAs (RR: 6.92, 95% CI: 1.52–31.40, p = 0.01; RR: 1.30, 95% CI: 1.04–1.61, p = 0.02). The occurrence of hypertension was lower in vadadustat than in ESAs (RR: 0.81, 95% CI: 0.69–0.96, p = 0.01). The occurrence of vascular-access complications was higher in roxadustat (RR: 1.15, 95% CI: 1.04–1.27, p<0.01) and lower in daprodustat (RR: 0.78, 95% CI: 0.66–0.92, p<0.01) than in ESAs. In the risk of the other nine events, including cardiovascular events, no significant differences were observed between HIF-PHIs and ESAs. For hemoglobin response, network meta-analysis showed that compared with ESAs, significant increases were shown in roxadustat (RR: 1.04, 95% CI: 1.01–1.07, p<0.01) and desidustat (RR: 1.22, 95% CI: 1.01–1.48, p = 0.04), whereas noticeable reductions were indicated in vadadustat (RR: 0.88, 95% CI: 0.82–0.94, p<0.01) and molidustat (RR: 0.83, 95% CI: 0.70–0.98, p = 0.02). There was no significant difference between daprodustat and ESAs (RR: 0.97, 95% CI: 0.89–1.06, p = 0.47).Conclusion: Although HIF-PHIs did not show significant differences from ESAs in terms of overall AEs and SAEs, statistical differences in gastrointestinal disorder, hypertension, and vascular-access complications were observed between HIF-PHIs, which deserved to be noted in clinical decision making.Systematic review registration: This study is registered with PROSPERO (registration number CRD42022312252

    Efficacy of Intra-Articular Injection of Celecoxib in a Rabbit Model of Osteoarthritis

    Get PDF
    Introduction: Osteoarthritis is the most common form of arthritis. It is a slowly progressive joint disease typically seen in middle-age to elderly people. Intra-articular injection of hyaluronic acid is a well-documented treatment for knee osteoarthritis. Celebrex® (celecoxib) is a novel nonsteroidal anti-inflammatory drug, which could help to reduce inflammation and to reduce pain. The aim of this study was to evaluate the effects of intra-articular injection of celecoxib in a rabbit osteoarthritis model. Methods: Thirty New Zealand white rabbits underwent unilateral knee joint surgery using the Hulth technique. Six weeks post-surgery, the animals were randomly divided into three groups, and each group was respectively given weekly intra-articular injections with Celebrex®, hyaluronic acid and saline. On the sixth week, the results were assessed in rabbit models by gross observation, histological evaluation, and expression of IL-1β, TNF-α, MMP-3. Results: In the group given Celebrex® and hyaluronic acid, the pathological changes in the rabbit articular cartilage improved significantly, much more than in the saline group. The statistically significant suppression of IL-1β, TNF-α, MMP-3 was shown in the Celebrex group. No significant differences were detected between two treatment groups. Conclusions: Intra-articular injection of celecoxib is beneficial for knee osteoarthritis. It might repair and protect early osteoarthritis cartilage by delaying cartilage degeneration and impairing the function of inflammatory mediators, therefore, intra-articular injection of celecoxib can be used as an alternative to the current treatment of osteoarthritis

    Deep learning radiomic analysis of DCE-MRI combined with clinical characteristics predicts pathological complete response to neoadjuvant chemotherapy in breast cancer

    Get PDF
    ObjectiveThe aim of this study was to develop and validate a deep learning-based radiomic (DLR) model combined with clinical characteristics for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. For early prediction of pCR, the DLR model was based on pre-treatment and early treatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data.Materials and methodsThis retrospective study included 95 women (mean age, 48.1 years; range, 29–77 years) who underwent DCE-MRI before (pre-treatment) and after two or three cycles of NAC (early treatment) from 2018 to 2021. The patients in this study were randomly divided into a training cohort (n=67) and a validation cohort (n=28) at a ratio of 7:3. Deep learning and handcrafted features were extracted from pre- and early treatment DCE-MRI contoured lesions. These features contribute to the construction of radiomic signature RS1 and RS2 representing information from different periods. Mutual information and least absolute shrinkage and selection operator regression were used for feature selection. A combined model was then developed based on the DCE-MRI features and clinical characteristics. The performance of the models was assessed using the area under the receiver operating characteristic curve (AUC) and compared using the DeLong test.ResultsThe overall pCR rate was 25.3% (24/95). One radiomic feature and three deep learning features in RS1, five radiomic features and 11 deep learning features in RS2, and five clinical characteristics remained in the feature selection. The performance of the DLR model combining pre- and early treatment information (AUC=0.900) was better than that of RS1 (AUC=0.644, P=0.068) and slightly higher that of RS2 (AUC=0.888, P=0.604) in the validation cohort. The combined model including pre- and early treatment information and clinical characteristics showed the best ability with an AUC of 0.925 in the validation cohort.ConclusionThe combined model integrating pre-treatment, early treatment DCE-MRI data, and clinical characteristics showed good performance in predicting pCR to NAC in patients with breast cancer. Early treatment DCE-MRI and clinical characteristics may play an important role in evaluating the outcomes of NAC by predicting pCR

    Transcatheter Versus Surgical Closure of Perimembranous Ventricular Septal Defects in Children A Randomized Controlled Trial

    Get PDF
    ObjectivesThe objective of this study was to evaluate the safety and efficacy of the surgical versus transcatheter approach to correct perimembranous ventricular septal defects (pmVSDs) in a prospective, randomized, controlled clinical trial.BackgroundpmVSD is a common congenital heart disease in children. Surgical closure of pmVSD is a well-established therapy but requires open-heart surgery with cardiopulmonary bypass. Although the transcatheter approach is associated with significant incidence of complete atrioventricular block, it may provide a less invasive alternative. Critical comparison of the safety and efficacy of the 2 interventions necessitates a prospective, randomized, controlled trial.MethodsBetween January 2009 and July 2010, 229 children with pmVSD were randomly assigned to surgical or transcatheter intervention. Clinical, laboratory, procedural, and follow-up data over a 2-year period were compared.ResultsNeither group had mortality or major complications. However, statistical analysis of the 2 groups demonstrated significant differences (p < 0.001) in minor adverse events (32 vs. 7), quantity of blood transfused, duration of the procedure, median hospital stay, median intensive care unit stay, median hospitalization cost, and median blood loss. During a median follow-up of 2 years, the left ventricular end-diastolic dimension of both groups returned to normal and there was no difference in closure rate, adverse events, and complications between groups.ConclusionsTranscatheter device closure and surgical repair are effective interventions with excellent midterm results for treating pmVSD in children. Transcatheter device closure has a lower incidence of myocardial injury, less blood transfused, faster recovery, shorter hospital stay, and lower medical expenses. (Transcatheter Closure Versus Surgery of Perimembranous Ventricular Septal Defects; NCT00890799
    • …
    corecore