124 research outputs found

    A direct unified wave-particle method for simulating non-equilibrium flows

    Full text link
    In this work, the Navier-Stokes (NS) solver is combined with the Direct simulation Monte Carlo (DSMC) solver in a direct way, under the wave-particle formulation [J. Comput. Phys. 401, 108977 (2020)]. Different from the classical domain decomposition method with buffer zone for overlap, in the proposed direct unified wave-particle (DUWP) method, the NS solver is coupled with DSMC solver on the level of algorithm. Automatically, in the rarefied flow regime, the DSMC solver leads the simulation, while the NS solver leads the continuum flow simulation. Thus advantages of accuracy and efficiency are both taken. At internal flow regimes, like the transition flow regime, the method is accurate as well because a kind of mesoscopic modeling is proposed in this work, which gives the DUWP method the multi-scale property. Specifically, as to the collision process, at t<τt < \tau, it is supposed that only single collision happens, and the collision term of DSMC is just used. At t>τt > \tau, it is derived that 1−τ/Δt1-\tau/\Delta t of particles should experience multiple collisions, which will be absorbed into the wave part and calculated by the NS solver. Then the DSMC and NS solver can be coupled in a direct and simple way, bringing about multi-scale property. The governing equation is derived and named as multi-scale Boltzmann equation. Different from the original wave-particle method, in the proposed DUWP method, the wave-particle formulation is no more restricted by the Boltzmann-BGK type model and the enormous research findings of DSMC and NS solvers can be utilized into much more complicated flows, like the thermochemical non-equilibrium flow. In this work, one-dimensional cases in monatomic argon gas are preliminarily tested, such as shock structures and Sod shock tubes

    Shake-n-shack : enabling secure data exchange between Smart Wearables via handshakes

    Get PDF
    Since ancient Greece, handshaking has been commonly practiced between two people as a friendly gesture to express trust and respect, or form a mutual agreement. In this paper, we show that such physical contact can be used to bootstrap secure cyber contact between the smart devices worn by users. The key observation is that during handshaking, although belonged to two different users, the two hands involved in the shaking events are often rigidly connected, and therefore exhibit very similar motion patterns. We propose a novel Shake-n-Shack system, which harvests motion data during user handshaking from the wrist worn smart devices such as smartwatches or fitness bands, and exploits the matching motion patterns to generate symmetric keys on both parties. The generated keys can be then used to establish a secure communication channel for exchanging data between devices. This provides a much more natural and user-friendly alternative for many applications, e.g., exchanging/sharing contact details, friending on social networks, or even making payments, since it doesn't involve extra bespoke hardware, nor require the users to perform pre-defined gestures. We implement the proposed Shake-n-Shack 1 system on off-the-shelf smartwatches, and extensive evaluation shows that it can reliably generate 128-bit symmetric keys just after around 1s of handshaking (with success rate >99%), and is resilient to real-time mimicking attacks: in our experiments the Equal Error Rate (EER) is only 1.6% on average. We also show that the proposed Shake-n-Shack system can be extremely lightweight, and is able to run in-situ on the resource-constrained smartwatches without incurring excessive resource consumption

    A gas-surface interaction algorithm for discrete velocity methods in predicting rarefied and multi-scale flows

    Full text link
    The rarefied flow and multi-scale flow are crucial for the aerodynamic design of spacecraft, ultra-low orbital vehicles and plumes. By introducing a discrete velocity space, the discrete velocity method (DVM) and unified methods can capture complex and non-equilibrium distribution functions and describe flow behaviors exactly. The unified methods predict flows from continuum to rarefied regimes by adopting unified modeling, and they can be further applied to other multi-scale physics such as radiation heat transfer, phonon heat transfer and plasma. In the flow field, the concrete dynamic process needs to describe the gas-gas interaction and gas-surface interaction (GSI). However, in both DVM and unified methods, only a simple but not accurate GSI is used, which can be regarded as a Maxwell GSI with a fixed accommodation coefficient of 1 (full accommodation) at the present stage. To overcome the bottleneck in extending DVM and unified methods to the numerical experiment and investigate real multi-scale flow physics, this paper realizes precise GSI in the DVM framework by constructing the boundary conditions of a concrete Maxwell GSI with an adjustable accommodation coefficient. In the constructing process, the problems of macro-conservation and micro-consistency in the DVS at the boundary are well solved by reflected macroscopic flux and interpolation distribution function and interpolation error correction, respectively. Meanwhile, considering that the multi-scale flows in the background of aeronautics and aerospace are often at supersonic and hypersonic speeds, the unstructured velocity space (UVS) is essential. From the perspective of generality, the GSI is forced on UVS. Besides, by combined with the unified method (the unified gas-kinetic scheme in the paper), the effectiveness and validity of the present GSI on the DVM framework are verified by a series of simulations

    A global adaptive velocity space for general discrete velocity framework in predictions of rarefied and multi-scale flows

    Full text link
    The rarefied flow and multi-scale flow are crucial for the aerodynamic design of spacecraft, ultra-low orbital vehicles and plumes. By introducing a discrete velocity space, the Boltzmann method, such as the discrete velocity method and unified methods, can capture complex and non-equilibrium velocity distribution functions (VDFs) and describe flow behaviors exactly. However, the extremely steep slope and high concentration of the gas VDFs in a local particle velocity space make it very difficult for the Boltzmann method with structured velocity space to describe high speed flow. Therefore, the adaptive velocity space (AVS) is required for the Boltzmann solvers to be practical in complex rarefied flow and multi-scale flow. This paper makes two improvements to the AVS approach, which is then incorporated into a general discrete velocity framework, such as the unified gas-kinetic scheme. Firstly, a global velocity mesh is used to prevent the interpolation of the VDFs at the physical interface during the calculation of the microscopic fluxes, maintaining the program's high level of parallelism. Secondly, rather than utilizing costly interpolation, the VDFs on a new velocity space were reconstruction using the ``consanguinity" relationship. In other words, a split child node's VDF is the same as its parent's VDF, and a merged parent's VDF is the average of its children's VDFs. Additionally, the discrete deviation of the equilibrium distribution functions is employed to maintain the proposed method's conservation. Moreover, an appropriate set of adaptive parameters is established to enhance the automation of the proposed method. Finally, a number of numerical tests are carried out to validate the proposed method
    • …
    corecore