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Abstract—Since ancient Greece, handshaking has been com-
monly practiced between two people as a friendly gesture to
express trust and respect, or form a mutual agreement. In
this paper, we show that such physical contact can be used to
bootstrap secure cyber contact between the smart devices worn by
users. The key observation is that during handshaking, although
belonged to two different users, the two hands involved in the
shaking events are often rigidly connected, and therefore exhibit
very similar motion patterns. We propose a novel Shake-n-Shack
system, which harvests motion data during user handshaking
from the wrist worn smart devices such as smartwatches or
fitness bands, and exploits the matching motion patterns to
generate symmetric keys on both parties. The generated keys
can be then used to establish a secure communication channel
for exchanging data between devices. This provides a much more
natural and user-friendly alternative for many applications, e.g.
exchanging/sharing contact details, friending on social networks,
or even making payments, since it doesn’t involve extra bespoke
hardware, nor require the users to perform pre-defined gestures.
We implement the proposed Shake-n-Shack system on off-the-
shelf smartwatches, and extensive evaluation shows that it can
reliably generate 128-bit symmetric keys just after around 1s of
handshaking (with success rate >99%), and is resilient to real-
time mimicking attacks: in our experiments the Equal Error Rate
(EER) is only 1.6% on average. We also show that the proposed
Shake-n-Shack system can be extremely lightweight, and is able
to run in-situ on the resource-constrained smartwatches without
incurring excessive resource consumption.

I. INTRODUCTION

Wrist worn smart devices such as smartwatches and fitness
bands are becoming ubiquitous: according to the latest global
forecast [1] their market is set to triple its volume in the
near future, reaching $32.9 billion by 2020. Instead of re-
maining as the companion devices of smartphones, now they
are more independent, and capable of offering full-fledged
functionalities. For instance, the recently announced Apple
Watch Series 3 has the same level of connectivity including
4G LTE with smartphones, and can perform all kinds of
tasks such as messaging, receiving/making calls, or streaming
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Fig. 1: The motion pattern induced by handshaking between
two users can be captured by each of their wrist worn smart
wearables (e.g. a smartwatch and a fitness band as shown
in this figure), and used to generate cryptographic keys for
secure data exchange, e.g. sharing contact details or friending
on social networks.

music without presence of the paired phone [2]. Comparing
to smartphones, those wrist worn wearables are often rigidly
attached to the users’ body, and equipped with rich sensing
modalities, which makes them the ideal pervasive platform to
sense and interact with the internal and external user states. In
the near future they will become the key element in the cyber-
physical ecosystem, enabling the next generation applications
in a broad spectrum of sectors such as intelligent mobility,
smart spaces, and digital healthcare [3], [4], [5], [6].

In this paper, we leverage the unique advantages offered
by wrist worn smart devices, and explore the feasibility of
using handshakes, a common form of physical contact between
human beings, to enable secured data exchange between their
devices. The intuition is that in many circumstances, we often
shake hands and then exchange physical or digital tokens in
order to connect with the others. For example when meeting



with someone for the first time, as a proper etiquette we
typically shake hands with each other, and then exchange busi-
ness cards, save contact details on our phones, or even friend
each other on social networks. Essentially in those cases,
handshakes can be viewed as the trigger for the subsequent
data exchange activities, i.e. by shaking hands, both parties
establish mutual consent to share information in physical or
cyber world. Therefore, we aim to integrate the process of
exchanging private information with the actual handshakes, so
that when two users are shaking hands, their smartwatches
or fitness bands can automatically communicate to each other
and exchange data on-the-fly. We envision that in the future,
users may have the option to configure their smartwatches or
fitness bands to ‘socially discoverable’ during handshakes, in
the same way as the current wireless file sharing mechanisms
such as the Apple AirDrop [7].

Although this vision is appealing, there are several chal-
lenges need to be tackled. Firstly, the wireless communication
channels established for data exchange have to be secured,
since information such as contact details is sensitive, and
wireless communications are often prune to eavesdropping
attacks. Secondly, the data exchange process should require
zero effort from the users, i.e. they only need to shake hands
normally without extra intervention such as pairing in prior
or entering the same PINs. Finally, the system should be
efficient and lightweight enough to run in-situ on the resource-
constrained smartwatches or fitness bands, but not to quickly
drain the device battery.

Unfortunately, there is no existing solution can address all
three challenges at the same time. For instance, some existing
products and patents [8], [9] can detect handshakes or high
fives to exchange data such as social media info, but they
either broadcast over open wireless channels which can be
easily intercepted [8], or rely on the cloud to verify keys [9],
which won’t work without Internet connectivity and may incur
undesirable delays. On the other hand, using key distribution
protocols such as Diffie-Hellman (D-H) key exchange [10] re-
quires public key management infrastructure, which is compu-
tationally intensive and not feasible for real-time execution on
wearables. The Near Field Communication (NFC) technology
enables secure data communication between smart devices in
the vicinity (normally within 20cm). However, for now the
security of NFC on smart wearables is largely guaranteed
by the paired smartphones, such as passcodes or fingerprint
authentication. As wearables can work independently of phone
usage, the private data held by NFC can be vulnerable without
the extra layer of protection.

To overcome the shortcomings of existing approaches, we
propose the design and implementation of Shake-n-Shack,
a novel system that directly uses handshakes to encrypt data
exchange between wrist worn smart devices. It exploits the fact
that within an episode of handshaking, the two hands holding
together should produce similar movements, which can be
picked up by sensors (e.g. accelerometers) of smartwatches or
fitness bands worn on the corresponding wrists of both users.
With the captured motion signals, the proposed Shake-n-Shack

system generates symmetric cryptographic keys on both sides,
which are used to secure subsequent data exchange between
the two devices. Concretely, the technical contributions of this
paper are as follows:

• We propose Shake-n-Shack, a novel system for secure
data exchange between wrist worn smart wearable de-
vices via handshakes. To the best of our knowledge, this
is the first work that explicitly uses physical contact (i.e.
handshakes) to secure cyber contact (i.e. data exchange
between smart devices) in a natural and user-friendly way.

• We implement Shake-n-Shack on off-the-shelf smart-
watches, and propose a set of efficient algorithms which
capture and process the motion signals of handshaking
events, and generate symmetric keys in a distributed
fashion to encrypt/decrypt data exchange. Our system is
lightweight and can be always-on: it runs in real-time
on the resource-constrained smart wearables and incurs
marginal overhead.

• We evaluate Shake-n-Shack extensively on datasets col-
lected from real-world settings. The results show that it
is able to generate keys of over 140 bits within 2s of
handshaking, and the average key agreement rate between
two legitimate devices are close to 100%. We also show
that the proposed Shake-n-Shack system is resilient to
run-time mimicking attacks, where the Equal Error Rate
(EER) is only 1.6%.

The rest of the paper is organized as follows. Sec. II
discusses the application scenarios of the proposed Shake-n-
Shack system, and describes the threat model. Sec. III presents
the overview of the Shake-n-Shack system, and Sec. IV
explains the details of the proposed approach that enables
secure data exchange via handshakes. The proposed Shake-
n-Shack system is evaluated in Sec. V, and related work is
covered in Sec. VI. We conclude the paper in Sec. VII and
discuss potential future directions.

II. APPLICATION SCENARIOS AND THREAT MODEL

A. Application Scenarios
The proposed Shake-n-Shack system provides a natural and

reliable way to secure data exchange between wrist worn smart
devices when shaking hands. It uses the motion signals in-
duced by handshaking to simultaneously generating symmetric
keys across different devices, and use the keys to establish
secure communication channels. In fact, the generated keys
can also be used to encrypt wireless communications between
other mobile devices of the users, such as phones, laptops
or even smart vehicles, as long as they remain paired or
authenticated with the users’ smartwatches or fitness bands.
Therefore, the capability offered by Shake-n-Shack can be
orthogonal to devices types or communication modalities,
and is a fundamental building block for many application
scenarios. In practice, it can be implemented as an OS level
service, which empowers different apps to exchange informa-
tion securely with other users’ devices. In the following, we
discuss two example applications of the proposed Shake-n-
Shack system.



Fig. 2: The workflow of the proposed Shack-n-Shack system in the friending upon greeting scenario as discussed in Sec.II-A

Friending upon Greeting: In many social events, connecting
on social networks has become the convention after greeting
with each other. With Shake-n-Shack, this process can be
seamlessly done as two users shake hands, where they don’t
have to keep business cards or add each other manually on
WeChat/WhatsApp. Concretely, during handshaking the data
containing account details or friend request/confirmation will
be encrypted at one of the two devices with the key generated
by Shake-n-Shack, and transmitted through wireless channels.
Then the other device uses the symmetric key to decrypt the
data and perform further actions such as updating the friending
status accordingly.
Instant Data Sharing: Shake-n-Shack can also be used to
enable secure instant data sharing between users. As discussed
above, other types of smart devices such as smartphones or
tablets may also use the key generated by Shake-n-Shack to
secure their communication channels. For instance, imagine
Alice would like to share a photo on her laptop to Bob’s phone.
By simply shaking hands, her tablet uses the generated key to
secure a wireless channel such as WiFi Direct, and transmits
the data instantly. On Bob’s side, he may use the symmetric
key obtained from his smartwatch to decrypt and recover the
photo, without even taking his phone out.

B. Treat Model

Shake-n-Shack is designed to address impersonation at-
tack [11], which is a common security issue when transmitting
data over wireless medium. In such attacks, an adversary
impersonates to be legitimate in a communication protocol
to extract private information exchanged by the legitimate
devices. We consider the adversary as an active copycat, who
observes and eavesdrops the data exchange activities among
nearby legitimate users. As in [12], [13], in this paper we
assume the adversary has full knowledge of the system details
of Shake-n-Shack, and is able to sniff all the wireless traffic.
However, we assume the legitimate devices have not been
compromised, and it is impossible for the adversary to obtain
the on-board motion data. Once the adversary extracts an
encrypted message exchanged between two legitimate users,
he tries to mimic the very handshake movements between
them wearing a smartwatch or fitness band, by himself or with
another adversary. The recorded motion data is then used to

generate the same cryptographic key and attack the encrypted
message.

It is also worth pointing out that, in some cases the adversary
may be able to record the handshakes using video cameras,
and then try exhaustive search to decode the cached encrypted
messages. However, in practice the cost of launching such
sophisticated attacks is much higher, and can be potentially
neutralized by making the data self-destruct [14] after a
specific time. On the other hand, in some applications such as
automatic friending on social networks, the exchanged data is
merely short-lived tokens, which would already expire before
the adversary could decode the messages.

III. SYSTEM OVERVIEW

In this section, we present an overview of the proposed
Shake-n-Shack system. We consider the example of automatic
friending on social networks as discussed in Sec. II-A, and
show how Shake-n-Shack works in practice. Fig. 2 demon-
strates the workflow of the system in this scenario.
Handshake Motion Capture: As two users start to shake
hands, Shake-n-Shack captures the motion signals with the
on-board Inertial Measurement Units (IMUs), which have
been embedded in most of the current smart wearables. The
segments of raw sensor data is firstly aligned and preprocessed,
which are then used for the next step of key generation.
Key Generation & Reconciliation: With the preprocessed
motion data, Shake-n-Shack firstly applies dimensionality re-
duction techniques to recover the dominant signal components.
The extracted signals are then quantized and converted into
bits by thresholding. Due to the noisy nature of motion signals,
Shake-n-Shack also incorporates a key reconciliation step with
the other user’s device, to discard the ambiguous bits and only
keep the reliable ones to generate symmetric keys.
Wireless Channel Configuration: When a handshaking event
is detected, Shack-n-Shack enables wireless radios on the
smart wearables. As discussed in the previous section, Shack-
n-Shack is communication modality neutral: it relies on the
underlying network service to discover nearby devices, and
tires to establish a wireless communication channel with the
correct peer (i.e. the one party involved in this handshaking
event) using the generated keys.



Secure Data Exchange: Once appropriate wireless communi-
cation channel is established, the proposed Shake-n-Shack uses
the symmetric keys on both devices to secure data exchange
between them. Concretely, we consider the standard messages
encryption and decryption techniques, where the sender and
receiver encrypts/decrypts the messages with their local keys
respectively. In this way, although the wireless medium can be
sniffed, the adversary won’t be able to decode the intercepted
data without the correct keys.

Now we are in a position to explain the details of the
proposed secure data exchange approach.

IV. SECURE DATA EXCHANGE VIA HANDSHAKES

In this section, we discuss the key components of the
proposed Shake-n-Shack system which enable secure data
exchange via handshakes. We start with how to detect and
capture motion data during handshaking in Sec. IV-A, and
then describe our algorithms to generate and reconcile keys
in Sec. IV-B and Sec. IV-C respectively. Then in Sec. IV-D
we show how to establish the correct wireless channel, and
finally Sec. IV-E discusses the process of data encryption &
decryption in the proposed Shake-n-Shack system.

A. Handshake Motion Capture

In this paper, we assume that both users involved in a hand-
shake event wear smart devices such as smartwatches or fitness
bands, on the wrists of their dominant hands, i.e. the hands that
are used during the handshake. In this case, the motion of the
handshakes can be recorded by the Inertial Measurement Unit
(IMU) sensors, which are embedded in most of the current
off-the-shelf smart wearables. Typically, they contain a 3-axes
accelerometer, and optionally gyroscope and magnetometer.
In our system, we only use accelerometers since they are the
most pervasive and very efficient, while gyroscope consumes
significantly more energy. Our experiments show that, with
sensor readings just from the accelerometers, the proposed
system is able to generate robust enough cryptographic key.

Fig. 3 shows an example of the accelerometer sensor
readings over three axis during a handshake event (top three
plots), where we can see that the handshake induces periodic
patterns in the signal. On the other hand, the bottom plot of
Fig. 3 shows the squared magnitude of acceleration, which
is computed by combining the squared data values of signals
from all three axes. Clearly, the acceleration magnitude is very
significant with respect to the background noise, and we see
several peaks corresponding to the up and down movement
during handshaking. Therefore, our system detects the first
signal peak in a handshake event, and use it as the anchor
point to align the sensor readings for the next step of key
generation.

B. Key Generation

Signal Feature Extraction: As shown in Fig. 3, the raw
acceleration signal has three axes, representing motion with
respect to the body reference frame of the device. In practice,
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Fig. 3: The acceleration readings along three axis during
3s of a handshake event (top three plots), and the squared
acceleration magnitude (the bottom plot).

the devices can be attached to the wrists of the users in arbi-
trary ways, to reliably generate symmetric keys across different
devices, we need to transform the signal to reveal the dominant
motion patters that are invariant to device attachment. On the
other hand, although the acceleration magnitude is robust to
different device posture, as shown later in Sec. V-B it contains
much less information and thus impossible to generate high
quality keys (i.e. in terms of bit rate). Therefore in this paper,
we consider a Principal Component Analysis (PCA) based
approach, which converts the 3-axes acceleration into signals
representing the dominant motion components.

Let us assume two users, Alice and Bob, have shaken hands
with each other, and the motion data has been captured by both
of their smart wearables. Suppose Alice obtains a data matrix
X ∈ RM×N containing the accelerometer readings, where M
is the number of axes and N is the number of data points from
each axis. PCA finds a matrix U ∈ Rm×M which projects
the original data into a smaller subspace while retaining most
of the information. Before computing the matrix U , the data
matrix should be firstly centered., i.e., the mean value of each
column in data matrix X is subtracted:

XC = X − 1

m

M∑
i=1

Xi (1)

where Xi is the ith row of X . After the data matrix is centered,
the Eigenvalues and Eigenvectors matrices can be obtained by
conducting EigenValue Decomposition (EVD) as,

{U,Eordered, V
T } = EVD(XCX

T
C ) (2)

Eordered contains the Eigenvalues on its diagonal, which are
sorted in descending order according to their absolute values.
U contains the corresponding Eigenvectors by columns. Then
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Fig. 4: The proposed PCA-based approach extracts dominant
motion features from raw acceleration data, which are very
consistent across the two users shaking hands with each other
(Alice and Bob in this case).

we project the original data matrix into the subspace defined
by the U :

Y = UTX (3)

where Y ∈ Rm×N . It is well known that the first principal
component contains the largest part of information in the
original signal. It corresponds to the largest Eigenvalue in
Eordered, and the first row of the matrix Y . Therefore, we
use the first row of Y (denoted as Y 1) to represent the
dominant motion signal features. Fig 4 shows an example of
the computed features for both Alice and Bob. We see that
although generated on different devices, they exhibit similar
patterns and agree to each other very well. This confirms that
it is clearly possible to use such features to generate symmetric
keys across two different devices.
Signal Quantization: Now we need to convert the continuous
motion signal features into discrete keys. Our system uses
a similar signal quantization and bit extraction methods as
in [15] and [16], which quantize continuous signals into bit
codes. The idea is to firstly divide the time-varying continuous
signals into small segments with the same length. e.g. 10
data points as in our experiments. Then for each segment, we
compute its upper (δ+) and lower (δ−) quantization thresholds
as:

δ+ = µ+Kσ
δ− = µ−Kσ (4)

where µ is the mean and σ is the standard deviation of the sig-
nal magnitude within the segment. K is the quantization factor,
which determines the bits generation rate and key agreement
rate (we will discuss this in more details in Sec. V-B).

In practice, those thresholds are used to determine the bit
values at each position of the generated key. Specifically, a
data point over δ+ will be encoded as 1, while the one below
δ− will be 0. Any data points between the thresholds will

be discarded to improve stability. After this quantization step,
now Alice and Bob have their own keys locally at their devices.
Without loss of generality, in the following we denoted the
keys as KAlice and KBob.

C. Key Reconciliation

Theoretically, the generated keys can be used to encrypt and
decrypt the messages if and only if they agree with each other,
i.e. KAlice = KBob. However in practice, the keys generated
from the above process may not be able to precisely agree
with each other due to signal noise. In most cases, we would
obtain two keys KAlice and KBob, where KAlice ≈ KBob. The
disagreement often happens if the signal magnitude is close to
the thresholds, i.e. in the presence of small turbulence caused
by motion noise, a bit at Alice’s side might be discarded since
the signal is below the upper threshold δ+, while remained ‘1’
at Bob’s side.

To address this problem, we consider a key reconciliation
approach [12] to discard those ambiguous bits. The idea
is to exchange the index of the valid bit positions to the
other devices, and reach a mutual agreement on which bits
should be used in the final keys. For instance, assume the
key generated by Alice’s devices is [1x0xx11x00], while for
Bob is [1x00x11xx0], here x means the position where no
valid bit is present. Then both Alice and Bob inform each
other the positions of the valid bits, i.e., Alice sends PAlice =
{1, 3, 6, 7, 9, 10}, and Bob sends PBob = {1, 3, 4, 6, 7, 10}.
Upon receiving the positions, they compare the received vector
with the local one, and agree that only the bits that are valid
according to both vectors should be used. In this example,
the agreed positions should be {1, 3, 6, 7, 10} so that the final
symmetric keys are KAlice = KBob = [10110].

Note that at this stage, it is possible that the two users
haven’t established a communication channel with each other.
They just broadcast and receive the position vectors of valid
bits to/from the nearby devices. For instance, there may be
two pairs of users using Shack-n-Shack in a close proximity,
and in the following we explain how Shack-n-Shack uses the
received information to establish a secure wireless channel
with the correct peer.

D. Wireless Channel Configuration

As discussed above, in the presence of multiple pairs of
Shack-n-Shack users, we need to correctly set up commu-
nication channels between the right peers, i.e. the two who
is shaking each other’s hands. One naive approach is to
look at the received signal strengths (RSS), and choose the
device with the strongest RSS to connect. However this is
not robust enough in practice since RSS measurements are
inherently noisy. The proposed Shack-n-Shack considers a
probe-based approach. For instance, Alice might receive more
than one position vectors P from different devices, including
Bob’s. Then it performs the above reconciliation step for each
vector, and generate a list of candidate keys. Those candidate
keys are then used to encrypt a pre-defined probe message
whose content is known by everyone, and the encrypted



messages (one for each candidate key) are replied back to
the corresponding senders.

On the other hand, When Bob receives those probe mes-
sages, it tries to use the list of candidate keys to decrypt the
messages accordingly. It should be that just one message can
be successfully decrypted, which is the one sent by Alice. Now
Bob only needs to keep the candidate key from Alice, and
reply an acknowledgement message to Alice, indicating that
he is ready for further data exchange. In this way, the proposed
Shack-n-Shack system establishes a wireless communication
channel between Alice and Bob who is shaking hands with
each other, and identifies the correct keys for future data
encryption and decryption.

Note that besides the two wearables that have generated the
keys (i.e. the smartwatches or fitness bands worn by the users),
such a communication channel could also be established
between other devices (e.g. phones or laptops) belong to the
users, as long as they are paired or connected with those
wearables in the same private (often ad hoc) network. This
is straightforward since the wearables can simply share the
generated keys with the other devices within the network,
allowing those devices to directly perform the above probe
process, and initialize data exchange with each other.

E. Secure Data Exchange

Given the symmetric keys and configured wireless com-
munication channel, the proposed Shack-n-Shack uses the
standard encryption and decryption methods to guarantee the
confidentiality of the data exchange. In our implementation,
we require the generated keys to contain at least 140 valid
bits to ensure the level of security, and if unsuccessful Shack-
n-Shack will ask the users to do another handshake (see
Resilience to Mimicking Attacks in Sec. V-B). Then we con-
sider a fix length of the first 128 bits to encrypt and decrypt
messages at both sides.

Depending on different application scenarios, in some
cases such as automatic friending on social networks, the
data exchanged is merely digital tokens, i.e. friend re-
quests/confirmation. Therefore after successful completion of
the data exchange, the proposed system will also inform the
social networks about this transaction via their APIs, to update
the friending status accordingly.

V. EVALUATION

A. Experiment Setup

System Implementation: We implement Shake-n-Shack on
off-the-shelf smartwatches, which can run in real-time. In our
experiments, we use Samsung Gear Live, which has a Quad-
core 1.4GHz CPU, 512M RAM, and 300mAh battery, and run
Android Wear OS. We set the accelerometer sampling rate
to 200Hz, and uses the Bluetooth 4.0+ InsecureRfcomm to
establish wireless communication channels.
Data Collection: We recruited 20 volunteers to participate
in our experiments, containing 10 males and 10 females with
age ranging from 22 to 54. During each experiment session,
we asked all participants to wear smartwatches on their right

wrists, and randomly divided the 20 participants into five
groups, each containing four people. Within each group, two
of the participants were selected to be the legitimate users
while the other two were the adversaries. Then the legitimate
users were asked to shake hands to exchange data, while at the
same time the adversaries observed this and also shake hands
with each other, trying to mimic the pattern of the handshake
as much as they can.

We conduced over 1, 000 sessions of experiment for two
weeks time, and have collected two datasets: one containing
motion data from the legitimate users, while the other is the
data from the adversaries. In the following unless otherwise
stated, we refer to those two datasets as the legitimate dataset
and adversarial dataset.
Evaluation Metrics: In this paper, we evaluate the perfor-
mance of the proposed Shake-n-Shack system with respect to
the following metrics. Generated Bit Rate: is the number
of bits generated from the sensor readings per second. Bit
Agreement Rate denotes the percentage of the matching bits
of the two cryptographic keys generated by two devices during
a handshaking event. Signals Coherence is the empirical CDF
of the coherence of different motion signal features. Key
Success rate is the percentage that the two keys generated
via handshakes are identical. False Acceptance Rate (FAR)
is a measure of the probability that a mimicking adversary
generates an identical key to that of a legitimate device. False
Rejection Rate (FRR) is defined as the ratio of the failed
matching attempts via handshakes. It is obvious there is a
trade-off between FAR and FRR. Equal Error Rate (EER)
measures the trade-off between FAR and FRR and it is the
value of FAR or FRR when the two false rates are equal.
We also evaluate the system overhead of Shack-n-Shack by
profiling the Computation Time and Energy Consumption of
its key components on off-the-shelf smartwatches.

B. Experiment Results

Bit Rate vs. Signal Feature Extraction: The first experiment
studies the impact of signal feature extraction approaches in
terms of the generated bit rate. Fig. 5 shows the mean and
standard deviation of the generated bit rates of the proposed
PCA based approach with respect to the baseline method of
using acceleration magnitude. First we see that the proposed
approach produces significantly higher bit rate than using
acceleration magnitude. For example, when K = 0.7, the
generated bit rate from our approach is about 120 bit/sec,
which almost triples that of the acceleration magnitude based.
In addition, we also see that as quantization factor goes up, the
generate bit rate drops for both approaches. This is expected
since high quantization factor means bigger thresholds, where
the bits generation process is more prune to noise. However,
the PCA based approach degrades much more gracefully than
the baseline, especially in the range of [0.4, 0.8]. This is
because our approach can recover the most dominant motion
patterns from the raw signal, and thus is inherently more robust
to high quantization factors.
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Fig. 5: The bit rate of keys under differ-
ent quantisation factor K, generated by the
proposed PCA-based approach (the red line)
and the baseline approach using acceleration
magnitude (the blue line).
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Fig. 6: The impact of key reconciliation on (a) bit rate, and (b) bit agreement
rate of the generated keys.

Impact of Key Reconciliation: This experiment verifies the
impact of the proposed key reconciliation method as discussed
in Sec. IV-C. We consider both the generated bit rate and bit
agreement rate as the metrics. As shown in Fig. 6(a), we see
that on one hand, reconciliation slightly reduces the generated
bit rate, since it discards those ambiguous bits. However, this
has a positive knock-on effect on the bit agreement rate. As
shown in Fig. 6(b), the bit agreement rate is significantly
higher when key reconciliation is considered. In practice, for
a reasonable K, we would prefer the high bit agreement rate
introduced by reconciliation, since the generated keys are only
valid if they are identical in every bit: if an agreement can’t
be reached, the users would have to shake hands again to
regenerate the keys. In addition, the gap between with and
without reconciliation in Fig. 6(a) is only marginal especially
when K < 0.4 and K > 0.7.
Sensitivity Analysis: This set of experiments aims to sys-
tematically investigate the sensitivity of the proposed Shake-
n-Shack system. We use both the legitimate and adversarial
datasets, and vary the quantization factor K. The following
three metrics, generated bit rate, bit agreement rate and key
success rate are considered in the experiments.

Fig. 7(a) shows how the generated bit rate varies over K
on both datasets. We see that generally a smaller K produces
higher bit rate, and handshakes made by legitimate users (i.e.
from the legitimate dataset) achieve higher bit rate than that of
the adversaries. This is because legitimate handshakes tend to
produce very similar motion signals across two devices, and
thus only fewer bits in the generated keys will be thrown away
during the key reconciliation step.

On the other hand, for bit agreement rate, as shown in
Fig. 7(b), legitimate handshakes have slightly higher bit agree-
ment rate as K goes up. However, for the handshakes produced
by adversaries, the bit agreement rate first go slightly up and
then dropped, and the variances becomes much bigger. Note
that the average bit agreement rate from legitimate handshakes
achieve almost 100% when K is larger than 0.7. More impor-

tantly, we see that the gap between legitimate and adversarial
handshakes is very significant for all K. This implies that
legitimate handshakes are very hard to be mimicked in real-
time, since it is very difficult for the adversaries to reliably
generate high quality keys.

Finally, we evaluate how key success rate on legitimate
dataset, i.e. the generated two keys are identical, varies with
respect to the quantization factor K. As shown in Fig. 7(c),
the key success rate increases as K, which reaches 100%
when K is larger than 0.7. Therefore, in our case a larger
quantization factor K results in higher bit agreement rate and
key success rate, but has a negative impact on the bit rate. In
addition, we observed that the bit rate and bit agreement rate
of legitimate handshakes are consistently higher than that of
the adversarial, which means we could reject the adversarial
attempts with appropriate thresholds. Particularly in the current
Shack-n-Shack system, we use bit rate threshold to decide if
the generated key should be accepted as valid.
Resilience to Mimicking Attacks: In this experiment we
evaluate the performance of the proposed Shake-n-Shack
system under mimicking attacks. We assume that as two
legitimate users are shaking hands, there is an adversary who
can sniff the wireless media, and mimic the handshaking
patterns in real-time, trying to produce the same cryptographic
key. For the handshake events, we first analyze the coherence
between: a) signals produced by two legitimate devices, and b)
signals produced by one legitimate device and the adversarial
device which was imitating that handshake. Fig. 8(a) shows
the empirical CDFs of signal coherence for the two cases. We
see that the legitimate handshakes consistently produce much
coherent signals: around 97% of the signals have coherence
values over 0.9, while for adversarial around 97% is under 0.8.
This confirms that: a) during handshaking the two legitimate
devices tend to induce very similar motion signals; and b) it is
difficult to mimic the patterns of the handshakes in real-time
even the adversaries are close by.

Based on the above observations, now we evaluate the
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Fig. 7: The impact of different quantization factor (K) on the system performance in terms of (a) bit rate, (b) bit agreement
rate and (c) key success rate.
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Fig. 8: (a) The CDF of signal coherence between two signals
generated by legitimate handshakes (red), and by an adversary
mimicking the legitimate handshakes (blue). (b) FAR and
FFR of Shake-n-Shack under different bit rate thresholds and
quantization factor K. The best EER can be achieved in our
experiments is 0.016 (marked by the red rectangle).

performance of Shake-n-Shack when facing mimicking attacks
using metrics False Acceptance Rate (FAR), False Rejection
Rate (FRR) and Equal Error Rate (EER). Generally, we
would like to reduce both FAR and FRR, but in practice they
are often negatively correlated. As discussed in the previous
experiments, we use bit rate threshold to determine if a key
should be accepted. Therefore, here we vary the threshold
(from 20 to 90) to see the correlation between FRR and FAR
(see the lines in Fig. 8(b), where each dot is corresponding to
a bit rate threshold value).

We also vary the quantization factor K, and plot the FAR
vs. FRR curves for K = {0.7, 0.75, 0.8, 0.85}. As we can
see, Shake-n-Shack works best with K = 0.75, where both
FAR and FRR are lower (the curve is closer to the origin).
In this case the EER is 0.016 (see the rectangle marked
in Fig. 8), which is the best balance between FAR and
FRR. However in practice, we typically require a lower FAR
to make the system more conservative and robust against
mimicking attacks, although this will increase the chances
of falsely rejected legitimate handshakes. Concretely, in the
current implementation we set the quantization factor K to
0.75, and the bit rate threshold to 70 bits per second. As shown

TABLE I: Overhead of the proposed Shack-n-Shack system
inters of running time (ms) and energy consumption (mJ).

Components Time Energy
Handshake Detection 3.1 ms 2.04 mJ

Feature Extraction 78.4 ms 60.35 mJ
Key Generation 89.6 ms 6.25 mJ

Total 171.1 ms 68.64 mJ

in Fig. 7(a), with these parameter settings Shake-n-Shack is
able to generate a 128-bit key with only on average 1.3 seconds
of handshaking, and we use device vibration patterns to inform
the users if the data exchange is successfully completed, or
requires another go.

System Overhead: The final set of experiments evaluate the
overhead of the proposed Shake-n-Shack system when running
on off-the-shelf smart wearables. We profile the running time
and energy consumption caused by key components of the
system, including Handshake Detection, Feature Extraction,
and Key Generation. The overhead of rest components such
as data encryption and decryption can be application-specific,
and is not considered in this paper. In our implementation, we
use the very lightweight Advanced Encryption Standard (ASE)
for data encryption/decryption, which only incurs negligible
overhead according to our previous work [12].

Table I presents the detailed resource consumptions of the
three components obtained from Android APIs, averaging
from 30 independent tests. We can see that the total running
time is only 171.1ms, and thus we could easily run Shake-
n-Shack in real-time. On the other hand, the average extra
energy consumed by Shake-n-Shack is 68.64 mJ. Since Shake-
n-Shack only works opportunistically when data exchange is
required, its impact on the battery life should be limited. In
fact, the battery capacity of Samsung Gear Live used in our
experiments is 300 mAh (i.e., 4.32 kJ). If the targeted lifespan
of the devices is one day (normally 12 hours of active usage),
the proposed Shake-n-Shack system only accounts for 0.019%
of the hourly budget (360 J), which is marginal.



VI. RELATED WORK

Wrist Worn Smart Wearables: The studies on smartwatches
are booming in recent years and have produced many novel
applications to improve the well-being of human’s life. The
sensor readings, e.g., accelerometer and gyroscope of the
smartwatches can easily track the motion of user’s arm there-
fore are often used in activities recognition. For examples,
in [6], the authors proposed to use smartwatches to detect if
the wearers took a foosball break at workplace to maintain the
work-break balance of the workers. Moreover, smartwatches
were used to detect activities of the drivers in [5] to ensure
the safety of the wearer during drive and they could be also
used to recognize the text inputs [17]. To improve the accuracy
of activities recognition on smartwatches, the authors in [18]
sought the power of deep learning techniques. Besides of
activities recognition, there is also some work concerning the
security issue related to smartwatches. For example, in [19]
the authors proposed, Gait-watch, an authentication system
exploiting the unique gait information of the smartwatch users
to automatically detect the real user or malicious intruders.
Secure Wireless Communication Between Smart Devices:
A secure communication channel establishment between smart
mobile devices requires multiple parties encryption key gen-
eration. Key generation methods are mainly based on the
common information between the two parties sharing data.
One of the mainstream studies focus on the properties of the
wireless communication. For example, the Received Signal
Strength Indicator (RSSI) of the wireless channel are fre-
quently used to produce shared keys [20], [16], [21], [22],
[23] as the RSSI at the both ends should be the same. However
the RSSI-based methods are only suitable for wireless devices
exchanging packages frequently but the application scenarios
of Shake-n-Shack are for once-off data sharing. Another
mainstream of key generation for mobile devices is utilizing
the accelerometer readings. For examples, in [24], [13], the
authors proposed to hold two mobile devices in one hand and
shake them together; therefore the accelerometer reading could
be used to generate agreed keys. However, as our previous
discussion in Section I, these methods are not applicable for
smartwatches belonging to different users. The previous work
in [12] addressed the problem of automatic key generation
for paring the on-body sensor networks by utilizing another
natural pattern of human, i.e., gaits. It focused on the mobile
devices worn on the same human’s body; therefore, it cannot
be extended to this work. However, it is worth noting that
we adopt the common quantization and key reconciliation
mechanism proposed in previous work, however we solve
significantly different problems.
Data Exchange Between Smart Wearables: Finally, there
is some work exploring data sharing between smartwatches
or waistbands. For examples, the Nabu Smartband is able to
share users social contacts via handshake; Apple Inc. drafted
a patent [9] about exchanging information between devices
in proximity when detecting a “greeting event” including
handshakes. However, In both of these approaches, handshakes

were just regarded as a hint to inform the devices there
was a data sharing request, it did not consider to use these
handshakes to secure their data sharing process which was
the major contribution of this paper. Besides, In a patent [25]
submitted by Microsoft Inc., they proposed a new waist-worn
hardware which was able to transfer data via human body
therefore the secure data sharing could be achieved by physical
contacts like handshakes. However, it required extra hardware
and could not be adopted by the majority of currently available
smart wearables.

VII. CONCLUSION

In this paper, we propose the design and implementation
of Shake-n-Shack, a novel system which enables secure data
exchange between smart devices via handshakes. The proposed
system further blurs the boundaries between the physical and
cyber worlds, as it uses the physical contact i.e. handshakes
between users, to bridge cyber contact, such as friending on
social networks. Under the hood, Shake-n-Shack uses the wrist
worn smart wearables, such as smartwatches or fitness bands,
to capture the motion patterns induced by handshakes. We
show although belonged to different users, that the motion
signals of the two hands shaking together are very similar.
Based on this, we propose novel approaches to robustly
generate and reconcile cryptographic keys on both sides, and
use the pair of symmetric keys to establish secure wireless
communication channel in a distributed way. We evaluate
the proposed Shake-n-Shack system extensively in real-world
settings, and experimental results show that the proposed
Shake-n-Shack system: a) is able to reliably generate high
quality keys within less than two seconds of handshaking; b)
is very resilient to the mimicking attack, achieving only 1.6%
Equal Error Rate; and c) can run in real-time on off-the-shelf
smartwatches with very slim resource consumption.
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