59,451 research outputs found
Thermodynamical Properties and Quasi-localized Energy of the Stringy Dyonic Black Hole Solution
In this article, we calculate the heat flux passing through the horizon and the difference of energy between the Einstein and
M{\o}ller prescription within the region , in which is the region
between outer horizon and inner horizon , for the
modified GHS solution, KLOPP solution and CLH solution. The formula . E_{\rm
Einstein}|_{\cal M} = . E_{\rm M{\o}ller}|_{\cal M} - \sum_{\partial {\cal M}}
{\bf TS}$ is obeyed for the mGHS solution and the KLOPP solution, but not for
the CLH solution. Also, we suggest a RN-like stringy dyonic black hole
solution, which comes from the KLOPP solution under a dual transformation, and
its thermodynamical properties are the same as the KLOPP solution
Spin torque ferromagnetic resonance with magnetic field modulation
We demonstrate a technique of broadband spin torque ferromagnetic resonance
(ST-FMR) with magnetic field modulation for measurements of spin wave
properties in magnetic nanostructures. This technique gives great improvement
in sensitivity over the conventional ST-FMR measurements, and application of
this technique to nanoscale magnetic tunnel junctions (MTJs) reveals a rich
spectrum of standing spin wave eigenmodes. Comparison of the ST-FMR
measurements with micromagnetic simulations of the spin wave spectrum allows us
to explain the character of low-frequency magnetic excitations in nanoscale
MTJs.Comment: Also see: http://faculty.sites.uci.edu/krivorotovgroup
- …