118 research outputs found

    Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion Models

    Full text link
    Generative models have recently exhibited exceptional capabilities in text-to-image generation, but still struggle to generate image sequences coherently. In this work, we focus on a novel, yet challenging task of generating a coherent image sequence based on a given storyline, denoted as open-ended visual storytelling. We make the following three contributions: (i) to fulfill the task of visual storytelling, we propose a learning-based auto-regressive image generation model, termed as StoryGen, with a novel vision-language context module, that enables to generate the current frame by conditioning on the corresponding text prompt and preceding image-caption pairs; (ii) to address the data shortage of visual storytelling, we collect paired image-text sequences by sourcing from online videos and open-source E-books, establishing processing pipeline for constructing a large-scale dataset with diverse characters, storylines, and artistic styles, named StorySalon; (iii) Quantitative experiments and human evaluations have validated the superiority of our StoryGen, where we show StoryGen can generalize to unseen characters without any optimization, and generate image sequences with coherent content and consistent character. Code, dataset, and models are available at https://haoningwu3639.github.io/StoryGen_Webpage/Comment: Accepted by CVPR 2024. Project Page: https://haoningwu3639.github.io/StoryGen_Webpage

    Hand‐Held Gamma‐Ray Imaging Sensors Using Room‐Temperature 3‐Dimensional Position‐Sensitive Semiconductor Spectrometers

    Full text link
    This paper demonstrates the capability of compact gamma‐ray imaging devices using 3‐dimensional position sensitive CdZnTe semiconductor gamma‐ray spectrometers, developed at the University of Michigan. A prototype imager was constructed and tested using two 1 cm cube 3‐dimensional position sensitive CdZnTe detectors. Energy resolutions of 1.5% FWHM for single pixel events at 662 keV gamma‐ray energy were obtained on both detectors, and an angular resolution of about 5° FWHM was demonstrated. The capabilities of proposed devices, which can cover a wider energy range up to 2.6 MeV, are discussed. © 2002 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87581/2/209_1.pd

    Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting

    Full text link
    In multi-modal multi-agent trajectory forecasting, two major challenges have not been fully tackled: 1) how to measure the uncertainty brought by the interaction module that causes correlations among the predicted trajectories of multiple agents; 2) how to rank the multiple predictions and select the optimal predicted trajectory. In order to handle these challenges, this work first proposes a novel concept, collaborative uncertainty (CU), which models the uncertainty resulting from interaction modules. Then we build a general CU-aware regression framework with an original permutation-equivariant uncertainty estimator to do both tasks of regression and uncertainty estimation. Further, we apply the proposed framework to current SOTA multi-agent multi-modal forecasting systems as a plugin module, which enables the SOTA systems to 1) estimate the uncertainty in the multi-agent multi-modal trajectory forecasting task; 2) rank the multiple predictions and select the optimal one based on the estimated uncertainty. We conduct extensive experiments on a synthetic dataset and two public large-scale multi-agent trajectory forecasting benchmarks. Experiments show that: 1) on the synthetic dataset, the CU-aware regression framework allows the model to appropriately approximate the ground-truth Laplace distribution; 2) on the multi-agent trajectory forecasting benchmarks, the CU-aware regression framework steadily helps SOTA systems improve their performances. Specially, the proposed framework helps VectorNet improve by 262 cm regarding the Final Displacement Error of the chosen optimal prediction on the nuScenes dataset; 3) for multi-agent multi-modal trajectory forecasting systems, prediction uncertainty is positively correlated with future stochasticity; and 4) the estimated CU values are highly related to the interactive information among agents.Comment: arXiv admin note: text overlap with arXiv:2110.1394

    Methylation-mediated silencing of PTPRD induces pulmonary hypertension by promoting pulmonary arterial smooth muscle cell migration via the PDGFRB/PLCγ1 axis

    Get PDF
    OBJECTIVE: Pulmonary hypertension is a lethal disease characterized by pulmonary vascular remodeling and is mediated by abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Platelet-derived growth factor BB (PDGF-BB) is the most potent mitogen for PASMCs and is involved in vascular remodeling in pulmonary hypertension development. Therefore, the objective of our study is to identify novel mechanisms underlying vascular remodeling in pulmonary hypertension. METHODS: We explored the effects and mechanisms of PTPRD downregulation in PASMCs and PTPRD knockdown rats in pulmonary hypertension induced by hypoxia. RESULTS: We demonstrated that PTPRD is dramatically downregulated in PDGF-BB-treated PASMCs, pulmonary arteries from pulmonary hypertension rats, and blood and pulmonary arteries from lung specimens of patients with hypoxic pulmonary arterial hypertension (HPAH) and idiopathic PAH (iPAH). Subsequently, we found that PTPRD was downregulated by promoter methylation via DNMT1. Moreover, we found that PTPRD knockdown altered cell morphology and migration in PASMCs via modulating focal adhesion and cell cytoskeleton. We have demonstrated that the increase in cell migration is mediated by the PDGFRB/PLCγ1 pathway. Furthermore, under hypoxic condition, we observed significant pulmonary arterial remodeling and exacerbation of pulmonary hypertension in heterozygous PTPRD knock-out rats compared with the wild-type group. We also demonstrated that HET group treated with chronic hypoxia have higher expression and activity of PLCγ1 in the pulmonary arteries compared with wild-type group. CONCLUSION: We propose that PTPRD likely plays an important role in the process of pulmonary vascular remodeling and development of pulmonary hypertension in vivo

    Understanding the Improvement in the Stability of a Self-Assembled Multiple-Quantum Well Perovskite Light-Emitting Diode.

    Get PDF
    We fabricate two-dimensional Ruddlesden-Popper layered perovskite films by introducing 1-naphthylmethylamine iodide into the precursor, which forms a self-assembled multiple-quantum well (MQW) structure. Enabling outstanding electroluminescence properties, light-emitting diodes (LEDs) using the MQW structure also demonstrate significant improvement in stability in comparison with the stability of devices made from formamidinium lead iodide. To understand this, we perform electroabsorption spectroscopy, wide-field photoluminescence imaging microscopy and impedance spectroscopy. Our approach enables us to determine the mobility of iodide ions in MQW perovskites to be (1.5 ± 0.8) × 10-8 cm2 V-1 s-1, ∼2 orders of magnitude lower than that in three-dimensional perovskites. We highlight that activated ion migration is a requirement for a degradation pathway in which a steady supply of ions is needed to modify the perovskite/external contact interfaces. Therefore, the improvement in stability in a MQW perovskite LED is directly attributed to the suppressed ion migration due to the inserted organic layer acting as a barrier for ionic movement

    Multiple organ infection and the pathogenesis of SARS

    Get PDF
    After >8,000 infections and >700 deaths worldwide, the pathogenesis of the new infectious disease, severe acute respiratory syndrome (SARS), remains poorly understood. We investigated 18 autopsies of patients who had suspected SARS; 8 cases were confirmed as SARS. We evaluated white blood cells from 22 confirmed SARS patients at various stages of the disease. T lymphocyte counts in 65 confirmed and 35 misdiagnosed SARS cases also were analyzed retrospectively. SARS viral particles and genomic sequence were detected in a large number of circulating lymphocytes, monocytes, and lymphoid tissues, as well as in the epithelial cells of the respiratory tract, the mucosa of the intestine, the epithelium of the renal distal tubules, the neurons of the brain, and macrophages in different organs. SARS virus seemed to be capable of infecting multiple cell types in several organs; immune cells and pulmonary epithelium were identified as the main sites of injury. A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features

    Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods

    Get PDF
    By taking advantage of the anisotropy of AuNRs, we design different bifunctional PEG molecules to selectively bind to either the end or side face and simultaneously protect other faces of individual AuNRs. In this way, we successfully achieve orientation-controllable assemblies of AuNRs into side-by-side (SS), end-to-end (EE) and end-to-side (ES) orientations based on the electrostatic interaction between carboxylic PEG and CTAB capping on AuNRs. Furthermore, we find that the different orientations of assembledmotifs in these three types of AuNRs assemblies exhibited different near field coupling between the surface plasma of the neighboring AuNRs, leading to different surface-enhanced Raman signals. Undoubtedly, the current rational design of oriented assembly can be potentially useful for directing anisotropic nanoparticles into well-defined orientations, which provides a powerful route in designing families of novel nanodevices and nanomaterials with programmable electrical and optical properties.National Natural Science Foundation of China[20725310, 90923042]; Research Fund for the Doctoral Program of Higher Education of China[20100121120038]; Natural Science Foundation of Fujian Province of China[2010J01046]; Fundamental Research Funds for the Central Universities[2010121023]; key laboratory of Biomedical Material of Tianji

    Characteristics of SARS-CoV-2 Omicron BA.5 variants in Shanghai after ending the zero-COVID policy in December 2022: a clinical and genomic analysis

    Get PDF
    IntroductionAn unprecedented surge of Omicron infections appeared nationwide in China in December 2022 after the adjustment of the COVID-19 response policy. Here, we report the clinical and genomic characteristics of SARS-CoV-2 infections among children in Shanghai during this outbreak.MethodsA total of 64 children with symptomatic COVID-19 were enrolled. SARS-CoV-2 whole genome sequences were obtained using next-generation sequencing (NGS) technology. Patient demographics and clinical characteristics were compared between variants. Phylogenetic tree, mutation spectrum, and the impact of unique mutations on SARS-CoV-2 proteins were analysed in silico.ResultsThe genomic monitoring revealed that the emerging BA.5.2.48 and BF.7.14 were the dominant variants. The BA.5.2.48 infections were more frequently observed to experience vomiting/diarrhea and less frequently present cough compared to the BF.7.14 infections among patients without comorbidities in the study. The high-frequency unique non-synonymous mutations were present in BA.5.2.48 (N:Q241K) and BF.7.14 (nsp2:V94L, nsp12:L247F, S:C1243F, ORF7a:H47Y) with respect to their parental lineages. Of these mutations, S:C1243F, nsp12:L247F, and ORF7a:H47Y protein were predicted to have a deleterious effect on the protein function. Besides, nsp2:V94L and nsp12:L247F were predicted to destabilize the proteins.DiscussionFurther in vitro to in vivo studies are needed to verify the role of these specific mutations in viral fitness. In addition, continuous genomic monitoring and clinical manifestation assessments of the emerging variants will still be crucial for the effective responses to the ongoing COVID-19 pandemic

    Pretreatment Donors after Circulatory Death with Simvastatin Alleviates Liver Ischemia Reperfusion Injury through a KLF2-Dependent Mechanism in Rat

    Get PDF
    Objective. Severe hepatic ischemia reperfusion injury (IRI) can result in poor short- and long-term graft outcome after transplantation. The way to improve the viability of livers from donors after circulatory death (DCD) is currently limited. The aim of the present study was to explore the protective effect of simvastatin on DCD livers and investigate the underlying mechanism. Methods. 24 male rats randomly received simvastatin or its vehicle. 30 min later, rat livers were exposed to warm ischemia in situ for 30 min. Livers were removed and cold-stored in UW solution for 24 h, subsequently reperfused for 60 min with an isolated perfused rat liver system. Liver injury was evaluated during and after warm reperfusion. Results. Pretreatment of DCD donors with simvastatin significantly decreased IRI liver enzyme release, increased bile output and ATP, and ameliorated hepatic pathological changes. Simvastatin maintained the expression of KLF2 and its protective target genes (eNOS, TM, and HO-1), reduced oxidative stress, inhibited innate immune responses and inflammation, and increased the expression of Bcl-2/Bax to suppress hepatocyte apoptosis compared to DCD control group. Conclusion. Pretreatment of DCD donors with simvastatin improves DCD livers’ functional recovery probably through a KLF2-dependent mechanism. These data suggest that simvastatin may provide a potential benefit for clinical DCD liver transplantation
    corecore