101 research outputs found

    All in One: Exploring Unified Vision-Language Tracking with Multi-Modal Alignment

    Full text link
    Current mainstream vision-language (VL) tracking framework consists of three parts, \ie a visual feature extractor, a language feature extractor, and a fusion model. To pursue better performance, a natural modus operandi for VL tracking is employing customized and heavier unimodal encoders, and multi-modal fusion models. Albeit effective, existing VL trackers separate feature extraction and feature integration, resulting in extracted features that lack semantic guidance and have limited target-aware capability in complex scenarios, \eg similar distractors and extreme illumination. In this work, inspired by the recent success of exploring foundation models with unified architecture for both natural language and computer vision tasks, we propose an All-in-One framework, which learns joint feature extraction and interaction by adopting a unified transformer backbone. Specifically, we mix raw vision and language signals to generate language-injected vision tokens, which we then concatenate before feeding into the unified backbone architecture. This approach achieves feature integration in a unified backbone, removing the need for carefully-designed fusion modules and resulting in a more effective and efficient VL tracking framework. To further improve the learning efficiency, we introduce a multi-modal alignment module based on cross-modal and intra-modal contrastive objectives, providing more reasonable representations for the unified All-in-One transformer backbone. Extensive experiments on five benchmarks, \ie OTB99-L, TNL2K, LaSOT, LaSOTExt_{\rm Ext} and WebUAV-3M, demonstrate the superiority of the proposed tracker against existing state-of-the-arts on VL tracking. Codes will be made publicly available.Comment: Work in progres

    Low-Carbon and economic flexibility scheduling of power system with multiple generation resources penetration

    Get PDF
    The operation flexibility of the power system suffers great challenges due to the vigorously developing of renewable energy resources under the promotion of the carbon neutralization goal. To this end, this paper proposes an economical and flexible energy scheduling method for power system integrated with multiple generation resources while considering the operation of low-carbon. Specifically, flexibility evaluation indexes are constructed to describe the characteristics of the flexible generation units. Then they are connected with the flexibility of the power system in an economic and low-carbon flexible energy scheduling model. To coordinate the operation economy, flexibility, and carbon emission reduction, the model incorporates demand response, operational characteristics, and flexibility requirements. Further, the model is fully validated through the simulation on the modified IEEE 30-bus system. Results demonstrate that: the proposed method can reduce the system’s carbon emission and total operating costs and promote photovoltaic consumption

    Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods

    Get PDF
    By taking advantage of the anisotropy of AuNRs, we design different bifunctional PEG molecules to selectively bind to either the end or side face and simultaneously protect other faces of individual AuNRs. In this way, we successfully achieve orientation-controllable assemblies of AuNRs into side-by-side (SS), end-to-end (EE) and end-to-side (ES) orientations based on the electrostatic interaction between carboxylic PEG and CTAB capping on AuNRs. Furthermore, we find that the different orientations of assembledmotifs in these three types of AuNRs assemblies exhibited different near field coupling between the surface plasma of the neighboring AuNRs, leading to different surface-enhanced Raman signals. Undoubtedly, the current rational design of oriented assembly can be potentially useful for directing anisotropic nanoparticles into well-defined orientations, which provides a powerful route in designing families of novel nanodevices and nanomaterials with programmable electrical and optical properties.National Natural Science Foundation of China[20725310, 90923042]; Research Fund for the Doctoral Program of Higher Education of China[20100121120038]; Natural Science Foundation of Fujian Province of China[2010J01046]; Fundamental Research Funds for the Central Universities[2010121023]; key laboratory of Biomedical Material of Tianji

    The prognostic index PRIMA-PI combined with Ki67 as a better predictor of progression of disease within 24 months in follicular lymphoma

    Get PDF
    BackgroundProgression of disease within 24 months (POD24) is a risk factor for poor survival in follicular lymphoma (FL), and there is currently no optimal prognostic model to accurately predict patients with early disease progression. How to combine traditional prognostic models with new indicators to establish a new prediction system, to predict the early progression of FL patients more accurately is a future research direction.MethodsThis study retrospectively analyzed patients with newly diagnosed FL patients in Shanxi Provincial Cancer Hospital from January 2015 to December 2020. Data from patients undergoing immunohistochemical detection (IHC) were analyzed using χ2 test and multivariate Logistic regression. Also, we built a nomogram model based on the results of LASSO regression analysis of POD24, which was validated in both the training set and validation set, and additional external validation was performed using a dataset (n = 74) from another center, Tianjin Cancer Hospital.ResultsThe multivariate Logistic regression results suggest that high-risk PRIMA-PI group, Ki-67 high expression represent risk factors for POD24 (P<0.05). Next, PRIMA-PI and Ki67 were combined to build a new model, namely, PRIMA-PIC to reclassify high and low-risk groups. The result showed that the new clinical prediction model constructed by PRIMA-PI with ki67 has a high sensitivity to the prediction of POD24. Compared to PRIMA-PI, PRIMA-PIC also has better discrimination in predicting patient’s progression-free survival (PFS) and overall survival (OS). In addition, we built nomogram models based on the results of LASSO regression (histological grading, NK cell percentage, PRIMA-PIC risk group) in the training set, which were validated using internal validation set and external validation set, we found that C-index and calibration curve showed good performance.ConclusionAs such, the new predictive model-based nomogram established by PRIMA-PI and Ki67 could well predict the risk of POD24 in FL patients, which boasts clinical practical value

    Genomic Analyses Reveal Mutational Signatures and Frequently Altered Genes in Esophageal Squamous Cell Carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets

    CuCl2-catalyzed One-pot Formation of Tetrahydroquinolines from N-Methyl-N-alkylanilines and Vinyl Ethers in the Presence of t-Butylhydroperoxide

    No full text
    Tetrahydroquinoline skeletons can be formed by a CuCl2-catalyzed one-potreaction of N-methyl-N-alkylanilines and vinyl ethers in the presence of t-butyl-hydroperoxide
    • …
    corecore