136 research outputs found
Development Of An Improved On-Line Voltage Stability Index Using Synchronized Phasor Measurement
Recent events, such as the Northeast Blackout of 2003, have highlighted the need for accurate real-time stability assessment techniques to detect when an electric power system is on the brink of voltage collapse. While many techniques exist, most techniques are computationally demanding and cannot be used in an on-line application. A voltage stability index (VSI) can be designed to estimate the distance of the current operating point to the voltage marginally stable point during the system operation. In this research work, a new VSI was developed that not only can detect the system voltage marginally stable point but also is computationally efficient for on-line applications. Starting with deriving a method to predict three types of maximum transferable power of a single source power system, the new VSI is based on the three calculated load margins. In order to apply the VSI to large power systems, a method has been developed to simplify the large network behind a load bus into a single source and a single transmission line given the synchronized phasor measurements of the power system variables and network parameters. The simplified system model, to which the developed VSI can be applied, preserves the power flow and the voltage of the particular load bus. The proposed voltage stability assessment method, therefore, provides a VSI of each individual load bus and can identify the load bus that is the most vulnerable to voltage collapse. Finally, the new VSI was tested on three power systems. Results from these three test cases provided validation of the applicability and accuracy of the proposed VSI
Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications
Nano-thick metallic transition metal dichalcogenides such as VS are
essential building blocks for constructing next-generation electronic and
energy-storage applications, as well as for exploring unique physical issues
associated with the dimensionality effect. However, such 2D layered materials
have yet to be achieved through either mechanical exfoliation or bottom-up
synthesis. Herein, we report a facile chemical vapor deposition route for
direct production of crystalline VS nanosheets with sub-10 nm thicknesses
and domain sizes of tens of micrometers. The obtained nanosheets feature
spontaneous superlattice periodicities and excellent electrical conductivities
(~310 S cm), which has enabled a variety of applications
such as contact electrodes for monolayer MoS with contact resistances of
~1/4 to that of Ni/Au metals, and as supercapacitor electrodes in aqueous
electrolytes showing specific capacitances as high as 8.610 F
g. This work provides fresh insights into the delicate
structure-property relationship and the broad application prospects of such
metallic 2D materials.Comment: 23 pages, 5 figue
Outlook on ecologically improved composites for aviation interior and secondary structures
Today, mainly man-made materials such as carbon and glass fibres are used to produce composite parts in aviation. Renewable materials such as natural fibres or bio-sourced resin systems have not found their way into aviation, yet. The project ECO-COMPASS aims to evaluate the potential applications of ecologically improved composite materials in the aviation sector in an international collaboration of Chinese and European partners. Natural fibres such as flax and ramie will be used for different types of reinforcements and sandwich cores. Furthermore, the bio-based epoxy resins to substitute bisphenol-A based epoxy resins in secondary structures are under investigation. Adapted material protection technologies to reduce environmental influence and to improve fire resistance are needed to fulfil the demanding safety requirements in aviation. Modelling and simulation of chosen eco-composites aims for an optimized use of materials while a life cycle assessment aims to prove the ecological advantages compared to synthetic state-of-the-art materials. In this paper, the status of selected ecologically improved materials will be presented with an outlook for potential application in interior and secondary structures
Reprogramming of Treg cells in the inflammatory microenvironment during immunotherapy: a literature review
Regulatory T cells (Treg), as members of CD4+ T cells, have garnered extensive attention in the research of tumor progression. Treg cells have the function of inhibiting the immune effector cells, preventing tissue damage, and suppressing inflammation. Under the stimulation of the tumor inflammatory microenvironment (IM), the reprogramming of Treg cells enhances their suppression of immune responses, ultimately promoting tumor immune escape or tumor progression. Reducing the number of Treg cells in the IM or lowering the activity of Treg cells while preventing their reprogramming, can help promote the body’s anti-tumor immune responses. This review introduces a reprogramming mechanism of Treg cells in the IM; and discusses the regulation of Treg cells on tumor progression. The control of Treg cells and the response to Treg inflammatory reprogramming in tumor immunotherapy are analyzed and countermeasures are proposed. This work will provide a foundation for downregulating the immunosuppressive role of Treg in the inflammatory environment in future tumor immunotherapy
Multiple organ infection and the pathogenesis of SARS
After >8,000 infections and >700 deaths worldwide, the pathogenesis of the new infectious disease, severe acute respiratory syndrome (SARS), remains poorly understood. We investigated 18 autopsies of patients who had suspected SARS; 8 cases were confirmed as SARS. We evaluated white blood cells from 22 confirmed SARS patients at various stages of the disease. T lymphocyte counts in 65 confirmed and 35 misdiagnosed SARS cases also were analyzed retrospectively. SARS viral particles and genomic sequence were detected in a large number of circulating lymphocytes, monocytes, and lymphoid tissues, as well as in the epithelial cells of the respiratory tract, the mucosa of the intestine, the epithelium of the renal distal tubules, the neurons of the brain, and macrophages in different organs. SARS virus seemed to be capable of infecting multiple cell types in several organs; immune cells and pulmonary epithelium were identified as the main sites of injury. A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features
REPORTAJE CARMELO ARTILES BOLAÑOS. INFECAR [Material gráfico]
Copia digital. Madrid : Ministerio de Educación, Cultura y Deporte, 201
Recommended from our members
Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk
Known genetic loci explain only a small proportion of the familial relative risk of colorectal cancer (CRC). We conducted the largest genome-wide association study in East Asians with 14,963 CRC cases and 31,945 controls and identified six new loci associated with CRC risk (P = 3.42 × 10−8 to 9.22 × 10−21) at 10q22.3, 10q25.2, 11q12.2, 12p13.31, 17p13.3 and 19q13.2. Two of these loci map to genes (TCF7L2 and TGFB1) with established roles in colorectal tumorigenesis. Four other loci are located in or near genes involved in transcription regulation (ZMIZ1), genome maintenance (FEN1), fatty acid metabolism (FADS1 and FADS2), cancer cell motility and metastasis (CD9) and cell growth and differentiation (NXN). We also found suggestive evidence for three additional loci associated with CRC risk near genome-wide significance at 8q24.11, 10q21.1 and 10q24.2. Furthermore, we replicated 22 previously reported CRC loci. Our study provides insights into the genetic basis of CRC and suggests new biological pathways
- …