170 research outputs found

    Attribution of satellite-observed vegetation trends in a hyper-arid region of the Heihe River basin, Western China

    Get PDF
    Terrestrial vegetation dynamics are closely influenced by both climate and by both climate and by land use and/or land cover change (LULCC) caused by human activities. Both can change over time in a monotonic way and it can be difficult to separate the effects of climate change from LULCC on vegetation. Here we attempt to attribute trends in the fractional green vegetation cover to climate variability and to human activity in Ejina Region, a hyper-arid landlocked region in northwest China. This region is dominated by extensive deserts with relatively small areas of irrigation located along the major water courses as is typical throughout much of Central Asia. Variations of fractional vegetation cover from 2000 to 2012 were determined using Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index data with 250 m spatial resolution over 16-day intervals. We found that the fractional vegetation cover in this hyper-arid region is very low but that the mean growing season vegetation cover has increased from 3.4 % in 2000 to 4.5 % in 2012. The largest contribution to the overall greening was due to changes in green vegetation cover of the extensive desert areas with a smaller contribution due to changes in the area of irrigated land. Comprehensive analysis with different precipitation data sources found that the greening of the desert was associated with increases in regional precipitation. We further report that the area of land irrigated each year can be predicted using the runoff gauged 1 year earlier. Taken together, water availability both from precipitation in the desert and runoff inflow for the irrigation agricultural lands can explain at least 52 % of the total variance in regional vegetation cover from 2000 to 2010. The results demonstrate that it is possible to separate the satellite-observed changes in green vegetation cover into components due to climate and human modifications. Such results inform management on the implications for water allocation between oases in the middle and lower reaches and for water management in the Ejina oasis

    Rosuvastatin Reduces Neuroinflammation in the Hemorrhagic Transformation After rt-PA Treatment in a Mouse Model of Experimental Stroke

    Get PDF
    Hemorrhagic transformation (HT) is a serious complication that stimulates inflammation during reperfusion therapy after acute ischemic stroke. Rosuvastatin, a 3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, might improve the outcome of HT by inhibiting neuroinflammation. This study aimed to explore the protective effects of rosuvastatin against HT after recombinant tissue plasminogen activator (rt-PA) treatment in mice with experimental stroke via the attenuation of inflammation. A total of one hundred sixty-nine male BALB/c mice were used in the experiment. HT was successfully established in 70 mice that were subjected to 3 h of middle cerebral artery occlusion (MCAO) followed by a 10 mg/kg rt-PA injection over 10 min and reperfusion for 24 h. The mice were then administered rosuvastatin (1 mg/kg, 5 mg/kg) or saline (vehicle). The brain water content and neurological deficits (wire hang and adhesive removal somatosensory tests) were assessed at 24 h after rt-PA reperfusion following MCAO surgery. The morphology, blood-brain barrier (BBB) permeability and number of astrocytes and microglia were assessed by immunohistochemistry, electron microscopy and western blotting at 24 h after rt-PA reperfusion following MCAO surgery. Rosuvastatin protected against impaired neurological function and reversed the BBB leakage observed in the HT group. The increased activation of astrocytes and microglia and secretion of inflammatory factors caused by HT damage were significantly attenuated by high-dose rosuvastatin treatment vs. normal-dose rosuvastatin treatment. Related inflammatory pathways, such as the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, were downregulated in the rosuvastatin-treated groups compared with the HT group. In conclusion, our results indicate that rosuvastatin is a promising therapeutic agent for HT after rt-PA reperfusion following MCAO surgery in mice, as it attenuates neuroinflammation. Additionally, high-dose rosuvastatin treatment could have a greater anti-inflammatory effect on HT than normal-dose rosuvastatin treatment

    The growing burden of generalized myasthenia gravis: a population-based retrospective cohort study in Taiwan

    Get PDF
    BackgroundThe prevalence of myasthenia gravis is increasing in many countries, including Asia. As treatment options expand, population-based information about the disease burden can inform health technology assessments.MethodsWe conducted a population-based retrospective cohort study using the Taiwan National Healthcare Insurance Research database and Death Registry to describe the epidemiology, disease burden and treatment patterns of generalized myasthenia gravis (gMG) from 2009 to 2019. Episodes of hepatitis B virus (HBV) infection or reactivation were explored.ResultsThe number of patients with gMG increased from 1,576 in 2009 to 2,638 in 2019 and the mean (standard deviation) age from 51.63 (17.32) to 55.38 (16.29) years. The female:male ratio was 1.3:1. Frequently reported co-morbidities were hypertension (32–34% of patients), diabetes mellitus (16–21%) and malignancies (12–17%). The prevalence of patients with gMG increased annually from 6.83/100,000 population in 2009 to 11.18/100,000 population in 2019 (p < 0.0001). There was no temporal trend in all-cause fatality rates (range 2.76–3.79/100 patients annually) or gMG incidence rates (2.4–3.17/100,000 population annually). First-line treatment was with pyridostigmine (82%), steroids (58%), and azathioprine (11%). There was minimal change in treatment patterns over time. Among 147 new HBV infections, 32 (22%) received ≥4 weeks of antiviral therapy suggesting chronic infection. The HBV reactivation rate was 7.2%.ConclusionThe epidemiology of gMG in Taiwan is evolving rapidly, with higher prevalence rates and increasing involvement of older age-groups suggesting a growing burden of disease and associated healthcare costs. HBV infection or reactivation may pose a previously unrecognized recognized risk for patients with gMG receiving immunosuppressants

    An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield.

    Get PDF
    Maize ear size and kernel number differ among lines, however, little is known about the molecular basis of ear length and its impact on kernel number. Here, we characterize a quantitative trait locus, qEL7, to identify a maize gene controlling ear length, flower number and fertility. qEL7 encodes 1-aminocyclopropane-1- carboxylate oxidase2 (ACO2), a gene that functions in the final step of ethylene biosynthesis and is expressed in specific domains in developing inflorescences. Confirmation of qEL7 by gene editing of ZmACO2 leads to a reduction in ethylene production in developing ears, and promotes meristem and flower development, resulting in a ~13.4% increase in grain yield per ear in hybrids lines. Our findings suggest that ethylene serves as a key signal in inflorescence development, affecting spikelet number, floral fertility, ear length and kernel number, and also provide a tool to improve grain productivity by optimizing ethylene levels in maize or in other cereals

    Substantial transition to clean household energy mix in rural China

    Get PDF
    The household energy mix has significant impacts on human health and climate, as it contributes greatly to many health- and climate-relevant air pollutants. Compared to the well-established urban energy statistical system, the rural household energy statistical system is incomplete and is often associated with high biases. Via a nationwide investigation, this study revealed high contributions to energy supply from coal and biomass fuels in the rural household energy sector, while electricity comprised ∼20%. Stacking (the use of multiple sources of energy) is significant, and the average number of energy types was 2.8 per household. Compared to 2012, the consumption of biomass and coals in 2017 decreased by 45% and 12%, respectively, while the gas consumption amount increased by 204%. Increased gas and decreased coal consumptions were mainly in cooking, while decreased biomass was in both cooking (41%) and heating (59%). The time-sharing fraction of electricity and gases (E&G) for daily cooking grew, reaching 69% in 2017, but for space heating, traditional solid fuels were still dominant, with the national average shared fraction of E&G being only 20%. The non-uniform spatial distribution and the non-linear increase in the fraction of E&G indicated challenges to achieving universal access to modern cooking energy by 2030, particularly in less-developed rural and mountainous areas. In some non-typical heating zones, the increased share of E&G for heating was significant and largely driven by income growth, but in typical heating zones, the time-sharing fraction was <5% and was not significantly increased, except in areas with policy intervention. The intervention policy not only led to dramatic increases in the clean energy fraction for heating but also accelerated the clean cooking transition. Higher income, higher education, younger age, less energy/stove stacking and smaller family size positively impacted the clean energy transition

    Monitoring the Process and Characterizing Symptoms of Suckling Mouse Inoculation Promote Isolating Viruses from Ticks

    Get PDF
    Suckling mouse inoculation is an important method that has been used for years to isolate viruses from ticks; however, this method has usually been briefly described in the literature on a case-by-case basis upon successful isolation rather than providing extensive details. This study describes the procedure from preparation of tick homogenates to identification of virus isolation using the suckling mouse inoculation method. The transient and persistent features were characterized and the incidence of manifestations that developed in the suckling mice, especially in mice from which viruses were isolated, is reported. We identified 22 symptoms that developed in mice, including 13 transient symptoms that recovered by the end of the observation period and 7 persistent symptoms that the mice suffered from throughout the observation period. Persistent symptoms (lateral positioning and dead) and transient symptoms (malaise, emaciation, and difficulty turning over) were the main symptoms based on the high overall incidence. Moreover, we showed that mice from which viruses were isolated had a concentrated period and advanced days of disease onset. This study provides detailed information necessary for better use of suckling mouse inoculation to isolate viruses from ticks, which may benefit optimization of this method to identify, discover, and acquire tick-borne viruses

    Identification of Sequence Variants in Genetic Disease-Causing Genes Using Targeted Next-Generation Sequencing

    Get PDF
    Identification of gene variants plays an important role in research on and diagnosis of genetic diseases. A combination of enrichment of targeted genes and next-generation sequencing (targeted DNA-HiSeq) results in both high efficiency and low cost for targeted sequencing of genes of interest.To identify mutations associated with genetic diseases, we designed an array-based gene chip to capture all of the exons of 193 genes involved in 103 genetic diseases. To evaluate this technology, we selected 7 samples from seven patients with six different genetic diseases resulting from six disease-causing genes and 100 samples from normal human adults as controls. The data obtained showed that on average, 99.14% of 3,382 exons with more than 30-fold coverage were successfully detected using Targeted DNA-HiSeq technology, and we found six known variants in four disease-causing genes and two novel mutations in two other disease-causing genes (the STS gene for XLI and the FBN1 gene for MFS) as well as one exon deletion mutation in the DMD gene. These results were confirmed in their entirety using either the Sanger sequencing method or real-time PCR.Targeted DNA-HiSeq combines next-generation sequencing with the capture of sequences from a relevant subset of high-interest genes. This method was tested by capturing sequences from a DNA library through hybridization to oligonucleotide probes specific for genetic disorder-related genes and was found to show high selectivity, improve the detection of mutations, enabling the discovery of novel variants, and provide additional indel data. Thus, targeted DNA-HiSeq can be used to analyze the gene variant profiles of monogenic diseases with high sensitivity, fidelity, throughput and speed

    Cyclization of the intrinsically disordered a1Sdihydropyridine receptor II-III loop enhances secondary structure and in vitro function

    Get PDF
    A key component of excitation contraction (EC) coupling in skeletal muscle is the cytoplasmic linker (II-III loop) between the second and third transmembrane repeats of the α1S subunit of the dihydropyridine receptor (DHPR). The II-III loop has been previously examined in vitro using a linear II-III loop with unrestrained N- and C-terminal ends. To better reproduce the loop structure in its native environment (tethered to the DHPR transmembrane domains), we have joined the N and C termini using intein-mediated technology. Circular dichroism and NMR spectroscopy revealed a structural shift in the cyclized loop toward a protein with increased α-helical and β-strand structure in a region of the loop implicated in its in vitro function and also in a critical region for EC coupling. The affinity of binding of the II-III loop binding to the SPRY2 domain of the skeletal ryanodine receptor (RyR1) increased 4-fold, and its ability to activate RyR1 channels in lipid bilayers was enhanced 3-fold by cyclization. These functional changes were predicted consequences of the structural enhancement. We suggest that tethering the N and C termini stabilized secondary structural elements in the DHPR II-III loop and may reflect structural and dynamic characteristics of the loop that are inherent in EC coupling

    Estimating sparse functional brain networks with spatial constraints for MCI identification.

    No full text
    Functional brain network (FBN), estimated with functional magnetic resonance imaging (fMRI), has become a potentially useful way of diagnosing neurological disorders in their early stages by comparing the connectivity patterns between different brain regions across subjects. However, this depends, to a great extent, on the quality of the estimated FBNs, indicating that FBN estimation is a key step for the subsequent task of disorder identification. In the past decades, researchers have developed many methods to estimate FBNs, including Pearson's correlation and (regularized) partial correlation, etc. Despite their widespread applications in current studies, most of the existing methods estimate FBNs only based on the dependency between the measured blood oxygen level dependent (BOLD) signals, which ignores spatial relationship of signals associated with different brain regions. Due to the space and material parsimony principle of our brain, we believe that the spatial distance between brain regions has an important influence on FBN topology. Therefore, in this paper, we assume that spatially neighboring brain regions tend to have stronger connections and/or share similar connections with others; based on this assumption, we propose two novel methods to estimate FBNs by incorporating the information of brain region distance into the estimation model. To validate the effectiveness of the proposed methods, we use the estimated FBNs to identify subjects with mild cognitive impairment (MCI) from normal controls (NCs). Experimental results show that the proposed methods are better than the baseline methods in the sense of MCI identification accuracy
    • …
    corecore