2 research outputs found

    Optimizations of Autoencoders for Analysis and Classification of Microscopic In Situ Hybridization Images

    Full text link
    Currently, analysis of microscopic In Situ Hybridization images is done manually by experts. Precise evaluation and classification of such microscopic images can ease experts' work and reveal further insights about the data. In this work, we propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression. The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders. The model's performance is optimized by balancing the latent layers' length and complexity and fine-tuning hyperparameters. The results are validated by adapting the mean-squared error (MSE) metric, and comparison to expert's evaluation.Comment: 9 pages; 9 figure

    Mapping European Association of Urology Guideline Practice Across Europe: An Audit of Androgen Deprivation Therapy Use Before Prostate Cancer Surgery in 6598 Cases in 187 Hospitals Across 31 European Countries

    No full text
    Peer reviewe
    corecore