15 research outputs found

    First direct 7^{7}Be electron capture QQ-value measurement towards high-precision BSM neutrino physics searches

    Full text link
    We report the first direct measurement of the nuclear electron capture (EC) decay QQ-value of 7^{7}Be →\rightarrow 7^{7}Li via high-precision Penning trap mass spectrometry (PTMS). This was performed using the LEBIT Penning trap located at the National Superconducting Cyclotron Laboratory/Facility for Rare Isotope Beams (NSCL/FRIB) using the newly commissioned Batch-Mode Ion-Source (BMIS) to deliver the unstable 7^{7}Be+^{+} samples. With a measured value of QECQ_{EC} = 861.963(23) keV this result is also three times more precise than any previous determination of this quantity. This improved precision, and accuracy of the 7^7Be EC decay QQ-value is critical for ongoing experiments that measure the recoiling nucleus in this system as a signature to search for beyond Standard Model (BSM) neutrino physics using 7^7Be-doped superconducting sensors

    Mass Measurement of 27^{27}P for Improved Type-I X-ray Burst Modeling

    Full text link
    Light curves are the primary observable of type-I x-ray bursts. Computational x-ray burst models must match simulations to observed light curves. Most of the error in simulated curves comes from uncertainties in rprp process reaction rates, which can be reduced via precision mass measurements of neutron-deficient isotopes in the rprp process path. We perform a precise atomic mass measurement of 27^{27}P and use this new measurement to update existing type-I x-ray burst models to produce an improved light curve. High-precision Penning trap mass spectrometry was used to determine the atomic mass of 27^{27}P. Modules for Experiments in Stellar Astrophysics (MESA) was then used to simulate x-ray bursts using a 1D multi-zone model to produce updated light curves. The mass excess of 27^{27}P was measured to be -670.7±\pm 0.6 keV, a fourteen-fold precision increase over the mass reported in AME2020. The 26^{26}Si(p,γp, \gamma)27^{27}P and reverse photodisintegration reaction rates have been determined to a higher precision based on the new, high precision mass measurement of 27^{27}P, and MESA light curves generated using these rates. Changes in the mass of 27^{27}P seem to have minimal effect on XRB light curves, even in burster systems tailored to maximize impact. The mass of 27^{27}P does not play a significant role in x-ray burst light curves. It is important to understand that more advanced models don't just provide more precise results, but often qualitatively different ones. This result brings us a step closer to being able to extract stellar parameters from individual x-ray burst observations. In addition, the Isobaric Multiplet Mass Equation (IMME) has been validated for the A=27,T=3/2A=27, T=3/2 quartet, but only after including a small, theoretically predicted cubic term and utilizing an updated excitation energy for the T=3/2T=3/2 isobaric analogue state of 27^{27}Si.Comment: 8 pages, 7 figure

    Investigating nuclear structure near N=32 and N=34: Precision mass measurements of neutron-rich Ca, Ti, and V isotopes

    Get PDF
    Nuclear mass measurements of isotopes are key to improving our understanding of nuclear structure across the chart of nuclides, in particular, for the determination of the appearance or disappearance of nuclear shell closures. We present high-precision mass measurements of neutron-rich Ca, Ti, and V isotopes performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) and the Low Energy Beam and Ion Trap (LEBIT) facilities. These measurements were made using the TITAN multiple-reflection time-of-flight mass spectrometer (MR-ToF-MS) and the LEBIT 9.4T Penning trap mass spectrometer. In total, 13 masses were measured, 8 of which represent increases in precision over previous measurements. These measurements refine trends in the mass surface around N=32 and N=34, and support the disappearance of the N=32 shell closure with increasing proton number. Additionally, our data do not support the presence of a shell closure at N=34.Nuclear mass measurements of isotopes are key to improving our understanding of nuclear structure across the chart of nuclides, in particular for the determination of the appearance or disappearance of nuclear shell closures. We present high-precision mass measurements of neutron-rich Ca, Ti and V isotopes performed at the TITAN and LEBIT facilities. These measurements were made using the TITAN multiple-reflection time-of-flight mass spectrometer (MR-ToF-MS) and the LEBIT 9.4T Penning trap mass spectrometer. In total, 13 masses were measured, eight of which represent increases in precision over previous measurements. These measurements refine trends in the mass surface around N=32N = 32 and N=34N = 34, and support the disappearance of the N=32N = 32 shell closure with increasing proton number. Additionally, our data does not support the presence of a shell closure at N=34N = 34
    corecore