148 research outputs found

    Thermosensitive hybrid system based on pluronic F127 and nanoclay laponite for sustained local release of lidocaine hydrochloride

    Get PDF
    A novel thermosensitive local drug release system was prepared by incorporation of biocompatible nanoclay laponite into pluronic F127 solution and characterized by rheological measurements, zeta potential measurement and in vitro drug release measurement in the presence of lidocaine hydrochloride. All the systems transited from sol to gel with increase of temperature. The lower critical solution temperature (LCST) of the composite matrix changed little with increase in the mass of incorporated nanoclay, but the modulus increased with increase in the mass of incorporated nanoclay. Thein-vitrorelease experiments revealed that the novel system provided an extended duration of drugs compared to the pluronic F127 alone. This unique feature is attributed to the interaction of nanoclay laponite with lidocaine hydrochloride and increased modulus with incoporation of nanoclay laponite. The merits of the novel system, such as good cytocompatibility, thermosensitive properties, and improved sustained local release ability, make them a promising platform for the delivery of other drugs

    The role of 245 phase in alkaline iron selenide superconductors revealed by high pressure studies

    Get PDF
    Here we show that a pressure of about 8 GPa suppresses both the vacancy order and the insulating phase, and a further increase of the pressure to about 18 GPa induces a second transition or crossover. No superconductivity has been found in compressed insulating 245 phase. The metallic phase in the intermediate pressure range has a distinct behavior in the transport property, which is also observed in the superconducting sample. We interpret this intermediate metal as an orbital selective Mott phase (OSMP). Our results suggest that the OSMP provides the physical pathway connecting the insulating and superconducting phases of these iron selenide materials.Comment: 32 pages, 4 figure

    Incorporating Surprisingly Popular Algorithm and Euclidean Distance-based Adaptive Topology into PSO

    Full text link
    While many Particle Swarm Optimization (PSO) algorithms only use fitness to assess the performance of particles, in this work, we adopt Surprisingly Popular Algorithm (SPA) as a complementary metric in addition to fitness. Consequently, particles that are not widely known also have the opportunity to be selected as the learning exemplars. In addition, we propose a Euclidean distance-based adaptive topology to cooperate with SPA, where each particle only connects to k number of particles with the shortest Euclidean distance during each iteration. We also introduce the adaptive topology into heterogeneous populations to better solve large-scale problems. Specifically, the exploration sub-population better preserves the diversity of the population while the exploitation sub-population achieves fast convergence. Therefore, large-scale problems can be solved in a collaborative manner to elevate the overall performance. To evaluate the performance of our method, we conduct extensive experiments on various optimization problems, including three benchmark suites and two real-world optimization problems. The results demonstrate that our Euclidean distance-based adaptive topology outperforms the other widely adopted topologies and further suggest that our method performs significantly better than state-of-the-art PSO variants on small, medium, and large-scale problems

    QTL analysis for yield-related traits under different water regimes in maize

    Get PDF
    Drought is one of the most essential factors influencing maize yield. Improving maize varieties with drought tolerance by using marker-assisted or genomic selection requires more understanding of the genetic basis of yield-related traits under different water regimes. In the present study, 213 F2:3 families of the cross of H082183 (drought-tolerant) × Lv28 (drought susceptible) were phenotyped with five yield-related traits under four well-watered and six drought environments for two years. Quantitative trait loci analysis identified 133 significant QTLs (94 QTLs for ear traits and 39 QTLs for kernel traits) based on single environment analysis. The joint-environment analysis detected 25 QTLs under well-watered environments (eight QTLs for ear length, eight for ear diameter, one for ear weight, two for kernel weight per ear, and six for 100-kernel weight), and nine QTLs under water-stressed environments (two QTLs for ear length, three for ear diameter, one for ear weight, one for kernel weight, and two for 100-kernel weight). Among these joint-environment QTLs, one common QTL (qEL5) was stably identified at both of the water regimes. Meanwhile, two main-effect QTLs were detected in the well-watered environments, i.e. qEL10 for ear length and qHKW2 for 100-kernel weight. Also, qED8, qEW8, and qKW8 were found to be located in the same interval of Chr. 8. Similarly, qEL4s and qKW4s were found to be located in the same interval under water-stressed environments. These genomic regions could be candidate targets for further fine mapping and marker-assisted breeding in maize

    Targeted DNA Damage at Individual Telomeres Disrupts Their Integrity and Triggers Cell Death

    Get PDF
    Cellular DNA is organized into chromosomes and capped by a unique nucleoprotein structure, the telomere. Both oxidative stress and telomere shortening/dysfunction cause aging-related degenerative pathologies and increase cancer risk. However, a direct connection between oxidative damage to telomeric DNA, comprising \u3c1% of the genome, and telomere dysfunction has not been established. By fusing the KillerRed chromophore with the telomere repeat binding factor 1, TRF1, we developed a novel approach to generate localized damage to telomere DNA and to monitor the real time damage response at the single telomere level. We found that DNA damage at long telomeres in U2OS cells is not repaired efficiently compared to DNA damage in non-telomeric regions of the same length in heterochromatin. Telomeric DNA damage shortens the average length of telomeres and leads to cell senescence in HeLa cells and cell death in HeLa, U2OS and IMR90 cells, when DNA damage at non-telomeric regions is undetectable. Telomere-specific damage induces chromosomal aberrations, including chromatid telomere loss and telomere associations, distinct from the damage induced by ionizing irradiation. Taken together, our results demonstrate that oxidative damage induces telomere dysfunction and underline the importance of maintaining telomere integrity upon oxidative damage

    The Uyghur Population And Genetic Susceptibility To Type 2 Diabetes: Potential Role For Variants In CDKAL1, JAZF1, and IGF1 Genes

    Get PDF
    Substantial evidence suggests that type 2 diabetes mellitus (T2DM) is a multi-factorial disease with a strong genetic component. A list of genetic susceptibility loci in populations of European and Asian ancestry has been established in the literature. Little is known on the inter-ethnic contribution of such established functional polymorphic variants. We performed a case-control study to explore the genetic susceptibility of 16 selected T2DM-related SNPs in a cohort of 102 Uyghur objects (51 cases and 51 controls). Three of the 16 SNPs showed significant association with T2DM in the Uyghur population. There were significant differences between the T2DM and control groups in frequencies of the risk allelic distributions of rs7754840 (CDKAL1) (p=0.014), rs864745 (JAZF1) (p=0.032), and rs35767 (IGF1) (p=0.044). Carriers of rs7754840-C, rs35767-A, and rs864745-C risk alleles had a 2.32-fold [OR (95% CI): 1.19-4.54], 2.06-fold [OR (95% CI): 1.02-4.17], 0.48-fold [OR (95% CI): 0.24-0.94] increased risk for T2DM, respectively. The cumulative risk allelic scores of these 16 SNPs differed significantly between the T2DM patients and the controls [17.1±8.1 vs. 15.4±7.3; OR (95%CI): 1.27(1.07-1.50), p=0.007]. This is the first study to evaluate genomic variation at 16 SNPs in respective T2DM candidate genes for the Uyghur population compared with other ethnic groups. The SNP rs7754840 in CDKAL1, rs864745 in JAZF1, and rs35767 in IGF1 might serve as potential susceptibility loci for T2DM in Uyghurs. We suggest a broader capture and study of the world populations, including who that are hitherto understudied, are essential for a comprehensive understanding of the genetic/genomic basis of T2DM

    Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection

    Get PDF
    AbstractData from limited autopsies of human patients demonstrate that pathological changes in EV71-infected fatal cases are principally characterized by clear inflammatory lesions in different parts of the CNS; nearly identical changes were found in murine, cynomolgus and rhesus monkey studies which provide evidence of using animal models to investigate the mechanisms of EV71 pathogenesis. Our work uses neonatal rhesus monkeys to investigate a possible model of EV71 pathogenesis and concludes that this model could be applied to provide objective indicators which include clinical manifestations, virus dynamic distribution and pathological changes for observation and evaluation in interpreting the complete process of EV71 infection. This induced systemic infection and other collected indicators in neonatal monkeys could be repeated; the transmission appears to involve infecting new monkeys by contact with feces of infected animals. All data presented suggest that the neonatal rhesus monkey model could shed light on EV71 infection process and pathogenesis

    Case report: Microwave ablation is a safe and effective method for primary hyperparathyroidism in pregnancy

    Get PDF
    Primary hyperparathyroidism (PHPT) is a rare disease in pregnancy and endangers the health of both pregnant women and fetuses. However, the treatments are very limited for PHPT and most of them are unsatisfactory because of the peculiar state in pregnancy. The only curable method is parathyroidectomy which can be safely performed in the second trimester of pregnancy. In this case, we reported a pregnant woman with primary parathyroid adenoma presenting hypercalcemia and severe vomit at the end of first trimester. Finally, she got cured by microwave ablation at the end of first trimester and gave birth to a healthy baby boy

    Breakdown of Three-dimensional Dirac Semimetal State in pressurized Cd3As2

    Full text link
    We report the first observation of a pressure-induced breakdown of the 3D-DSM state in Cd3As2, evidenced by a series of in-situ high-pressure synchrotron X-ray diffraction (XRD) and single crystal transport measurements. We find that Cd3As2 undergoes a structural phase transition from a metallic tetragonal (T) phase in space group I41/acd to a semiconducting monoclinic (M) phase in space group P21/c at critical pressure 2.57 GPa, above this pressure, an activation energy gap appears, accompanied by distinct switches in Hall resistivity slope and electron mobility. These changes of crystal symmetry and corresponding transport properties manifest the breakdown of the 3D-DSM state in pressurized Cd3As2.Comment: 17 pages, 4 figure
    • …
    corecore