134 research outputs found

    TempLe: Learning Template of Transitions for Sample Efficient Multi-task RL

    Full text link
    Transferring knowledge among various environments is important to efficiently learn multiple tasks online. Most existing methods directly use the previously learned models or previously learned optimal policies to learn new tasks. However, these methods may be inefficient when the underlying models or optimal policies are substantially different across tasks. In this paper, we propose Template Learning (TempLe), the first PAC-MDP method for multi-task reinforcement learning that could be applied to tasks with varying state/action space. TempLe generates transition dynamics templates, abstractions of the transition dynamics across tasks, to gain sample efficiency by extracting similarities between tasks even when their underlying models or optimal policies have limited commonalities. We present two algorithms for an "online" and a "finite-model" setting respectively. We prove that our proposed TempLe algorithms achieve much lower sample complexity than single-task learners or state-of-the-art multi-task methods. We show via systematically designed experiments that our TempLe method universally outperforms the state-of-the-art multi-task methods (PAC-MDP or not) in various settings and regimes

    Safe and Robust Multi-Agent Reinforcement Learning for Connected Autonomous Vehicles under State Perturbations

    Full text link
    Sensing and communication technologies have enhanced learning-based decision making methodologies for multi-agent systems such as connected autonomous vehicles (CAV). However, most existing safe reinforcement learning based methods assume accurate state information. It remains challenging to achieve safety requirement under state uncertainties for CAVs, considering the noisy sensor measurements and the vulnerability of communication channels. In this work, we propose a Robust Multi-Agent Proximal Policy Optimization with robust Safety Shield (SR-MAPPO) for CAVs in various driving scenarios. Both robust MARL algorithm and control barrier function (CBF)-based safety shield are used in our approach to cope with the perturbed or uncertain state inputs. The robust policy is trained with a worst-case Q function regularization module that pursues higher lower-bounded reward in the former, whereas the latter, i.e., the robust CBF safety shield accounts for CAVs' collision-free constraints in complicated driving scenarios with even perturbed vehicle state information. We validate the advantages of SR-MAPPO in robustness and safety and compare it with baselines under different driving and state perturbation scenarios in CARLA simulator. The SR-MAPPO policy is verified to maintain higher safety rates and efficiency (reward) when threatened by both state perturbations and unconnected vehicles' dangerous behaviors.Comment: 6 pages, 5 figure

    Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in Multi-Agent RL

    Full text link
    Most existing works consider direct perturbations of victim's state/action or the underlying transition dynamics to show vulnerability of reinforcement learning agents under adversarial attacks. However, such direct manipulation may not always be feasible in practice. In this paper, we consider another common and realistic attack setup: in a multi-agent RL setting with well-trained agents, during deployment time, the victim agent ν\nu is exploited by an attacker who controls another agent α\alpha to act adversarially against the victim using an \textit{adversarial policy}. Prior attack models under such setup do not consider that the attacker can confront resistance and thus can only take partial control of the agent α\alpha, as well as introducing perceivable ``abnormal'' behaviors that are easily detectable. A provable defense against these adversarial policies is also lacking. To resolve these issues, we introduce a more general attack formulation that models to what extent the adversary is able to control the agent to produce the adversarial policy. Based on such a generalized attack framework, the attacker can also regulate the state distribution shift caused by the attack through an attack budget, and thus produce stealthy adversarial policies that can exploit the victim agent. Furthermore, we provide the first provably robust defenses with convergence guarantee to the most robust victim policy via adversarial training with timescale separation, in sharp contrast to adversarial training in supervised learning which may only provide {\it empirical} defenses

    Robustness to Multi-Modal Environment Uncertainty in MARL using Curriculum Learning

    Full text link
    Multi-agent reinforcement learning (MARL) plays a pivotal role in tackling real-world challenges. However, the seamless transition of trained policies from simulations to real-world requires it to be robust to various environmental uncertainties. Existing works focus on finding Nash Equilibrium or the optimal policy under uncertainty in one environment variable (i.e. action, state or reward). This is because a multi-agent system itself is highly complex and unstationary. However, in real-world situation uncertainty can occur in multiple environment variables simultaneously. This work is the first to formulate the generalised problem of robustness to multi-modal environment uncertainty in MARL. To this end, we propose a general robust training approach for multi-modal uncertainty based on curriculum learning techniques. We handle two distinct environmental uncertainty simultaneously and present extensive results across both cooperative and competitive MARL environments, demonstrating that our approach achieves state-of-the-art levels of robustness

    Game-Theoretic Robust Reinforcement Learning Handles Temporally-Coupled Perturbations

    Full text link
    Robust reinforcement learning (RL) seeks to train policies that can perform well under environment perturbations or adversarial attacks. Existing approaches typically assume that the space of possible perturbations remains the same across timesteps. However, in many settings, the space of possible perturbations at a given timestep depends on past perturbations. We formally introduce temporally-coupled perturbations, presenting a novel challenge for existing robust RL methods. To tackle this challenge, we propose GRAD, a novel game-theoretic approach that treats the temporally-coupled robust RL problem as a partially-observable two-player zero-sum game. By finding an approximate equilibrium in this game, GRAD ensures the agent's robustness against temporally-coupled perturbations. Empirical experiments on a variety of continuous control tasks demonstrate that our proposed approach exhibits significant robustness advantages compared to baselines against both standard and temporally-coupled attacks, in both state and action spaces

    Adversarial Auto-Augment with Label Preservation: A Representation Learning Principle Guided Approach

    Full text link
    Data augmentation is a critical contributing factor to the success of deep learning but heavily relies on prior domain knowledge which is not always available. Recent works on automatic data augmentation learn a policy to form a sequence of augmentation operations, which are still pre-defined and restricted to limited options. In this paper, we show that a prior-free autonomous data augmentation's objective can be derived from a representation learning principle that aims to preserve the minimum sufficient information of the labels. Given an example, the objective aims at creating a distant "hard positive example" as the augmentation, while still preserving the original label. We then propose a practical surrogate to the objective that can be optimized efficiently and integrated seamlessly into existing methods for a broad class of machine learning tasks, e.g., supervised, semi-supervised, and noisy-label learning. Unlike previous works, our method does not require training an extra generative model but instead leverages the intermediate layer representations of the end-task model for generating data augmentations. In experiments, we show that our method consistently brings non-trivial improvements to the three aforementioned learning tasks from both efficiency and final performance, either or not combined with strong pre-defined augmentations, e.g., on medical images when domain knowledge is unavailable and the existing augmentation techniques perform poorly. Code is available at: https://github.com/kai-wen-yang/LPA3}{https://github.com/kai-wen-yang/LPA3.Comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022
    • …
    corecore