3,252 research outputs found
A Probabilistic Linear Genetic Programming with Stochastic Context-Free Grammar for solving Symbolic Regression problems
Traditional Linear Genetic Programming (LGP) algorithms are based only on the
selection mechanism to guide the search. Genetic operators combine or mutate
random portions of the individuals, without knowing if the result will lead to
a fitter individual. Probabilistic Model Building Genetic Programming (PMB-GP)
methods were proposed to overcome this issue through a probability model that
captures the structure of the fit individuals and use it to sample new
individuals. This work proposes the use of LGP with a Stochastic Context-Free
Grammar (SCFG), that has a probability distribution that is updated according
to selected individuals. We proposed a method for adapting the grammar into the
linear representation of LGP. Tests performed with the proposed probabilistic
method, and with two hybrid approaches, on several symbolic regression
benchmark problems show that the results are statistically better than the
obtained by the traditional LGP.Comment: Genetic and Evolutionary Computation Conference (GECCO) 2017, Berlin,
German
H2O contents and hydrogen isotopic composition of apatite crystals from L, LL5-6 ordinary chondrites.
第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月30日(金) 国立国語研究所 2階講
Analysis of Bidirectional Associative Memory using SCSNA and Statistical Neurodynamics
Bidirectional associative memory (BAM) is a kind of an artificial neural
network used to memorize and retrieve heterogeneous pattern pairs. Many efforts
have been made to improve BAM from the the viewpoint of computer application,
and few theoretical studies have been done. We investigated the theoretical
characteristics of BAM using a framework of statistical-mechanical analysis. To
investigate the equilibrium state of BAM, we applied self-consistent signal to
noise analysis (SCSNA) and obtained a macroscopic parameter equations and
relative capacity. Moreover, to investigate not only the equilibrium state but
also the retrieval process of reaching the equilibrium state, we applied
statistical neurodynamics to the update rule of BAM and obtained evolution
equations for the macroscopic parameters. These evolution equations are
consistent with the results of SCSNA in the equilibrium state.Comment: 13 pages, 4 figure
Correct quantum chemistry in a minimal basis from effective Hamiltonians
We describe how to create ab-initio effective Hamiltonians that qualitatively
describe correct chemistry even when used with a minimal basis. The
Hamiltonians are obtained by folding correlation down from a large parent basis
into a small, or minimal, target basis, using the machinery of canonical
transformations. We demonstrate the quality of these effective Hamiltonians to
correctly capture a wide range of excited states in water, nitrogen, and
ethylene, and to describe ground and excited state bond-breaking in nitrogen
and the chromium dimer, all in small or minimal basis sets
Synapse efficiency diverges due to synaptic pruning following over-growth
In the development of the brain, it is known that synapses are pruned
following over-growth. This pruning following over-growth seems to be a
universal phenomenon that occurs in almost all areas -- visual cortex, motor
area, association area, and so on. It has been shown numerically that the
synapse efficiency is increased by systematic deletion. We discuss the synapse
efficiency to evaluate the effect of pruning following over-growth, and
analytically show that the synapse efficiency diverges as O(log c) at the limit
where connecting rate c is extremely small. Under a fixed synapse number
criterion, the optimal connecting rate, which maximize memory performance,
exists.Comment: 15 pages, 16 figure
Recommended from our members
Pairing of Competitive and Topologically Distinct Regulatory Modules Enhances Patterned Gene Expression
Biological networks are inherently modular, yet little is known about how modules are assembled to enable coordinated and complex functions. We used RNAi and time series, whole-genome microarray analyses to systematically perturb and characterize components of a Caenorhabditis elegans lineage-specific transcriptional regulatory network. These data are supported by selected reporter gene analyses and comprehensive yeast one-hybrid and promoter sequence analyses. Based on these results, we define and characterize two modules composed of muscle- and epidermal-specifying transcription factors that function together within a single cell lineage to robustly specify multiple cell types. The expression of these two modules, although positively regulated by a common factor, is reliably segregated among daughter cells. Our analyses indicate that these modules repress each other, and we propose that this cross-inhibition coupled with their relative time of induction function to enhance the initial asymmetry in their expression patterns, thus leading to the observed invariant gene expression patterns and cell lineage. The coupling of asynchronous and topologically distinct modules may be a general principle of module assembly that functions to potentiate genetic switches.Molecular and Cellular Biolog
photoproduction on the proton at = 1.5 - 2.9 GeV
Differential cross sections at and decay asymmetries for
the reaction have been measured using linearly
polarized photons in the range 1.5 to 2.9 GeV. These cross sections were used
to determine the Pomeron strength factor. The cross sections and decay
asymmetries are consistently described by the -channel Pomeron and
pseudoscalar exchange model in the region above 2.37 GeV. In the
lower energy region, an excess over the model prediction is observed in the
energy dependence of the differential cross sections at .
This observation suggests that additional processes or interference effects
between Pomeron exchange and other processes appear near the threshold region.Comment: 6 pages, 7 figure
Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain
Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer
- …
