1 research outputs found

    New Solid Electrolyte Na<sub>9</sub>Al(MoO<sub>4</sub>)<sub>6</sub>: Structure and Na<sup>+</sup> Ion Conductivity

    No full text
    Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na<sub>9</sub>Al­(MoO<sub>4</sub>)<sub>6</sub>. The monoclinic Na<sub>9</sub>Al­(MoO<sub>4</sub>)<sub>6</sub> consists of isolated polyhedral [Al­(MoO<sub>4</sub>)<sub>6</sub>]<sup>9–</sup> clusters composed of a central AlO<sub>6</sub> octahedron sharing vertices with six MoO<sub>4</sub> tetrahedra to form a three-dimensional framework. The AlO<sub>6</sub> octahedron also shares edges with one Na1O<sub>6</sub> octahedron and two Na2O<sub>6</sub> octahedra. Na3–Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>. High-temperature conductivity measurements revealed that the conductivity (σ) of Na<sub>9</sub>Al­(MoO<sub>4</sub>)<sub>6</sub> at 803 K equals 1.63 × 10<sup>–2</sup> S cm<sup>–1</sup>. The temperature behavior of the <sup>23</sup>Na and <sup>27</sup>Al nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the <sup>23</sup>Na nuclei indicate the presence of fast Na<sup>+</sup> ion diffusion in the studied compound. At <i>T</i><490 K, diffusion occurs by means of Na<sup>+</sup> ion jumps exclusively through the sublattice of Na3–Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3–Na5 sublattice) only at higher temperatures
    corecore