15,635 research outputs found

    Universal quantum gates between nitrogen-vacancy centers in a levitated nanodiamond

    Full text link
    We propose a scheme to realize universal quantum gates between nitrogen-vacancy (NV) centers in an optically trapped nanodiamond, through uniform magnetic field induced coupling between the NV centers and the torsional mode of the levitated nanodiamond. The gates are tolerant to the thermal noise of the torsional mode. By combining the scheme with dynamical decoupling technology, it is found that the high fidelity quantum gates are possible for the present experimental conditions. The proposed scheme is useful for NV-center-based quantum network and distributed quantum computationComment: 7 pages, 6 figure

    Nonadiabatic dynamics and geometric phase of an ultrafast rotating electron spin

    Full text link
    The spin in a rotating frame has attracted a lot of attentions recently, as it deeply relates to both fundamental physics such as pseudo-magnetic field and geometric phase, and applications such as gyroscopic sensors. However, previous studies only focused on adiabatic limit, where the rotating frequency is much smaller than the spin frequency. Here we propose to use a levitated nano-diamond with a built-in nitrogen-vacancy (NV) center to study the dynamics and the geometric phase of a rotating electron spin without adiabatic approximation. We find that the transition between the spin levels appears when the rotating frequency is comparable to the spin frequency at zero magnetic field. Then we use Floquet theory to numerically solve the spin energy spectrum, study the spin dynamics and calculate the geometric phase under a finite magnetic field, where the rotating frequency to fulfill the resonant transition condition could be greatly reduced.Comment: 6+2 pages, 3+1 figure

    Identification-method research for open-source software ecosystems

    Get PDF
    In recent years, open-source software (OSS) development has grown, with many developers around the world working on different OSS projects. A variety of open-source software ecosystems have emerged, for instance, GitHub, StackOverflow, and SourceForge. One of the most typical social-programming and code-hosting sites, GitHub, has amassed numerous open-source-software projects and developers in the same virtual collaboration platform. Since GitHub itself is a large open-source community, it hosts a collection of software projects that are developed together and coevolve. The great challenge here is how to identify the relationship between these projects, i.e., project relevance. Software-ecosystem identification is the basis of other studies in the ecosystem. Therefore, how to extract useful information in GitHub and identify software ecosystems is particularly important, and it is also a research area in symmetry. In this paper, a Topic-based Project Knowledge Metrics Framework (TPKMF) is proposed. By collecting the multisource dataset of an open-source ecosystem, project-relevance analysis of the open-source software is carried out on the basis of software-ecosystem identification. Then, we used our Spectral Clustering algorithm based on Core Project (CP-SC) to identify software-ecosystem projects and further identify software ecosystems. We verified that most software ecosystems usually contain a core software project, and most other projects are associated with it. Furthermore, we analyzed the characteristics of the ecosystem, and we also found that interactive information has greater impact on project relevance. Finally, we summarize the Topic-based Project Knowledge Metrics Framework

    Heat and Mass Transfer in a Thin Liquid Film over an Unsteady Stretching Surface in the Presence of Thermosolutal Capillarity and Variable Magnetic Field

    Get PDF
    The heat and mass transfer characteristics of a liquid film which contain thermosolutal capillarity and a variable magnetic field over an unsteady stretching sheet have been investigated. The governing equations for momentum, energy, and concentration are established and transformed to a set of coupled ordinary equations with the aid of similarity transformation. The analytical solutions are obtained using the double-parameter transformation perturbation expansion method. The effects of various relevant parameters such as unsteady parameter, Prandtl number, Schmidt number, thermocapillary number, and solutal capillary number on the velocity, temperature, and concentration fields are discussed and presented graphically. Results show that increasing values of thermocapillary number and solutal capillary number both lead to a decrease in the temperature and concentration fields. Furthermore, the influences of thermocapillary number on various fields are more remarkable in comparison to the solutal capillary number
    • …
    corecore