10,900 research outputs found
OPE of the stress tensors and surface operators
We demonstrate that the divergent terms in the OPE of a stress tensor and a
surface operator of general shape cannot be constructed only from local
geometric data depending only on the shape of the surface. We verify this
holographically at d=3 for Wilson line operators or equivalently the twist
operator corresponding to computing the entanglement entropy using the
Ryu-Takayanagi formula. We discuss possible implications of this result.Comment: 20 pages, no figur
Nonadiabatic dynamics and geometric phase of an ultrafast rotating electron spin
The spin in a rotating frame has attracted a lot of attentions recently, as
it deeply relates to both fundamental physics such as pseudo-magnetic field and
geometric phase, and applications such as gyroscopic sensors. However, previous
studies only focused on adiabatic limit, where the rotating frequency is much
smaller than the spin frequency. Here we propose to use a levitated
nano-diamond with a built-in nitrogen-vacancy (NV) center to study the dynamics
and the geometric phase of a rotating electron spin without adiabatic
approximation. We find that the transition between the spin levels appears when
the rotating frequency is comparable to the spin frequency at zero magnetic
field. Then we use Floquet theory to numerically solve the spin energy
spectrum, study the spin dynamics and calculate the geometric phase under a
finite magnetic field, where the rotating frequency to fulfill the resonant
transition condition could be greatly reduced.Comment: 6+2 pages, 3+1 figure
Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal
Based on the quantum technique of weak measurement, we propose a scheme to
protect the entanglement from correlated amplitude damping decoherence. In
contrast to the results of memoryless amplitude damping channel, we show that
the memory effects play a significant role in the suppression of entanglement
sudden death and protection of entanglement under severe decoherence. Moreover,
we find that the initial entanglement could be drastically amplified by the
combination of weak measurement and quantum measurement reversal even under the
correlated amplitude damping channel. The underlying mechanism can be
attributed to the probabilistic nature of weak measurements.Comment: 11 pages, 5 figures, accepted by Quantum Information Processin
Enhanced quantum teleportation in the background of Schwarzschild spacetime by weak measurements
It is commonly believed that the fidelity of quantum teleportation in the
gravitational field would be degraded due to the heat up by the Hawking
radiation. In this paper, we point out that the Hawking effect could be
eliminated by the combined action of pre- and post-weak measurements, and thus
the teleportation fidelity is almost completely protected. It is intriguing to
notice that the enhancement of fidelity could not be attributed to the
improvement of entanglement, but rather to the probabilistic nature of weak
measurements. Our work extends the ability of weak measurements as a quantum
technique to battle against gravitational decoherence in relativistic quantum
information.Comment: 9 pages, 5 figures, comments are welcom
Distributed interaction between computer virus and patch: A modeling study
The decentralized patch distribution mechanism holds significant promise as
an alternative to its centralized counterpart. For the purpose of accurately
evaluating the performance of the decentralized patch distribution mechanism
and based on the exact SIPS model that accurately captures the average dynamics
of the interaction between viruses and patches, a new virus-patch interacting
model, which is known as the generic SIPS model, is proposed. This model
subsumes the linear SIPS model. The dynamics of the generic SIPS model is
studied comprehensively. In particular, a set of criteria for the final
extinction or/and long-term survival of viruses or/and patches are presented.
Some conditions for the linear SIPS model to accurately capture the average
dynamics of the virus-patch interaction are empirically found. As a
consequence, the linear SIPS model can be adopted as a standard model for
assessing the performance of the distributed patch distribution mechanism,
provided the proper conditions are satisfied
- …