10,900 research outputs found

    OPE of the stress tensors and surface operators

    Full text link
    We demonstrate that the divergent terms in the OPE of a stress tensor and a surface operator of general shape cannot be constructed only from local geometric data depending only on the shape of the surface. We verify this holographically at d=3 for Wilson line operators or equivalently the twist operator corresponding to computing the entanglement entropy using the Ryu-Takayanagi formula. We discuss possible implications of this result.Comment: 20 pages, no figur

    Nonadiabatic dynamics and geometric phase of an ultrafast rotating electron spin

    Full text link
    The spin in a rotating frame has attracted a lot of attentions recently, as it deeply relates to both fundamental physics such as pseudo-magnetic field and geometric phase, and applications such as gyroscopic sensors. However, previous studies only focused on adiabatic limit, where the rotating frequency is much smaller than the spin frequency. Here we propose to use a levitated nano-diamond with a built-in nitrogen-vacancy (NV) center to study the dynamics and the geometric phase of a rotating electron spin without adiabatic approximation. We find that the transition between the spin levels appears when the rotating frequency is comparable to the spin frequency at zero magnetic field. Then we use Floquet theory to numerically solve the spin energy spectrum, study the spin dynamics and calculate the geometric phase under a finite magnetic field, where the rotating frequency to fulfill the resonant transition condition could be greatly reduced.Comment: 6+2 pages, 3+1 figure

    Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal

    Full text link
    Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.Comment: 11 pages, 5 figures, accepted by Quantum Information Processin

    Enhanced quantum teleportation in the background of Schwarzschild spacetime by weak measurements

    Full text link
    It is commonly believed that the fidelity of quantum teleportation in the gravitational field would be degraded due to the heat up by the Hawking radiation. In this paper, we point out that the Hawking effect could be eliminated by the combined action of pre- and post-weak measurements, and thus the teleportation fidelity is almost completely protected. It is intriguing to notice that the enhancement of fidelity could not be attributed to the improvement of entanglement, but rather to the probabilistic nature of weak measurements. Our work extends the ability of weak measurements as a quantum technique to battle against gravitational decoherence in relativistic quantum information.Comment: 9 pages, 5 figures, comments are welcom

    Distributed interaction between computer virus and patch: A modeling study

    Full text link
    The decentralized patch distribution mechanism holds significant promise as an alternative to its centralized counterpart. For the purpose of accurately evaluating the performance of the decentralized patch distribution mechanism and based on the exact SIPS model that accurately captures the average dynamics of the interaction between viruses and patches, a new virus-patch interacting model, which is known as the generic SIPS model, is proposed. This model subsumes the linear SIPS model. The dynamics of the generic SIPS model is studied comprehensively. In particular, a set of criteria for the final extinction or/and long-term survival of viruses or/and patches are presented. Some conditions for the linear SIPS model to accurately capture the average dynamics of the virus-patch interaction are empirically found. As a consequence, the linear SIPS model can be adopted as a standard model for assessing the performance of the distributed patch distribution mechanism, provided the proper conditions are satisfied
    • …
    corecore