18,540 research outputs found
Incentivizing High-quality Content from Heterogeneous Users: On the Existence of Nash Equilibrium
We study the existence of pure Nash equilibrium (PNE) for the mechanisms used
in Internet services (e.g., online reviews and question-answer websites) to
incentivize users to generate high-quality content. Most existing work assumes
that users are homogeneous and have the same ability. However, real-world users
are heterogeneous and their abilities can be very different from each other due
to their diverse background, culture, and profession. In this work, we consider
heterogeneous users with the following framework: (1) the users are
heterogeneous and each of them has a private type indicating the best quality
of the content she can generate; (2) there is a fixed amount of reward to
allocate to the participated users. Under this framework, we study the
existence of pure Nash equilibrium of several mechanisms composed by different
allocation rules, action spaces, and information settings. We prove the
existence of PNE for some mechanisms and the non-existence of PNE for some
mechanisms. We also discuss how to find a PNE for those mechanisms with PNE
either through a constructive way or a search algorithm
Study on the Rheological Properties and Constitutive Model of Shenzhen Mucky Soft Soil
In order to obtain the basic parameters of numerical analysis about the time-space effect of the deformation occurring in Shenzhen deep soft-soil foundation pit, a series of triaxial consolidated-undrained shear rheology tests on the peripheral mucky soft soil of a deep foundation pit support were performed under different confining pressures. The relations between the axial strain of the soil and time, as well as between the pore-water pressure of the soil and time, were achieved, meanwhile on the basis of analyzing the rheological properties of the soil, the relevant rheological models were built. Analysis results were proved that the rheology of Shenzhen mucky soft soil was generally viscous, elastic, and plastic, and had a low yield stress between 90 and 150 kPa. The increase in pore-water pressure made the rheological time effect of the mucky soft soil more remarkable. Thus, the drainage performance in practical engineering should be improved to its maximum possibility extent to decrease the soft-soil rheological deformation. Lastly, a six-component extended Burgers model was employed to fit the test results and the parameters of the model were determined. Findings showed that the extended Burgers model could satisfactorily simulate the various rheological stages of the mucky soft soil. The constitutive model and the determination of its parameters can be served as a foundation for the time-space effect analysis on the deformation of deep soft-soil foundation pits
Universal impurity-induced bound state in topological superfluids
We predict a universal mid-gap bound state in topological superfluids,
induced by either non-magnetic or magnetic impurities in the strong scattering
limit. This universal state is similar to the lowest-energy Caroli-de
Gennes-Martricon bound state in a vortex core, but is bound to localized
impurities. We argue that the observation of such a universal bound state can
be a clear signature for identifying topological superfluids. We theoretically
examine our argument for a spin-orbit coupled ultracold atomic Fermi gas
trapped in a two-dimensional harmonic potential, by performing extensive
self-consistent calculations within the mean-field Bogoliubov-de Gennes theory.
A realistic scenario for observing universal bound state in ultracold K
atoms is proposed.Comment: 5 pages + 4 figures; published in PRL; see the relevant study in 1D:
Phys. Rev. A 87, 013622 (2013); see also the accompanying Physics Synopsis:
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.02040
Magnetic Skyrmion Transport in a Nanotrack With Spatially Varying Damping and Non-adiabatic Torque
Reliable transport of magnetic skyrmions is required for any future
skyrmion-based information processing devices. Here we present a micromagnetic
study of the in-plane current-driven motion of a skyrmion in a ferromagnetic
nanotrack with spatially sinusoidally varying Gilbert damping and/or
non-adiabatic spin-transfer torque coefficients. It is found that the skyrmion
moves in a sinusoidal pattern as a result of the spatially varying Gilbert
damping and/or non-adiabatic spin-transfer torque in the nanotrack, which could
prevent the destruction of the skyrmion caused by the skyrmion Hall effect. The
results provide a guide for designing and developing the skyrmion transport
channel in skyrmion-based spintronic applications.Comment: 5 pages, 6 figure
- âŠ