16,254 research outputs found

    A Convolutional Neural Network Approach for Half-Pel Interpolation in Video Coding

    Full text link
    Motion compensation is a fundamental technology in video coding to remove the temporal redundancy between video frames. To further improve the coding efficiency, sub-pel motion compensation has been utilized, which requires interpolation of fractional samples. The video coding standards usually adopt fixed interpolation filters that are derived from the signal processing theory. However, as video signal is not stationary, the fixed interpolation filters may turn out less efficient. Inspired by the great success of convolutional neural network (CNN) in computer vision, we propose to design a CNN-based interpolation filter (CNNIF) for video coding. Different from previous studies, one difficulty for training CNNIF is the lack of ground-truth since the fractional samples are actually not available. Our solution for this problem is to derive the "ground-truth" of fractional samples by smoothing high-resolution images, which is verified to be effective by the conducted experiments. Compared to the fixed half-pel interpolation filter for luma in High Efficiency Video Coding (HEVC), our proposed CNNIF achieves up to 3.2% and on average 0.9% BD-rate reduction under low-delay P configuration.Comment: International Symposium on Circuits and Systems (ISCAS) 201

    Revisiting the TALE repeat

    Get PDF
    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33–35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13238-014-0035-2) contains supplementary material, which is available to authorized users

    Fabrication and properties of PVA-TiO2 hydrogel composites

    Get PDF
    AbstractThe preparation and properties of PVA-TiO2 hydrogel composites have been studied in this research. The results show that tensile strength and compression modulus of PVA-TiO2 hydrogel composites increased significantly, but the elongation did not changed obviously compared with the PVA hydrogel, indicating the good interaction between inorganic nanoparticles and organic polymer. Friction performance of the hydrogels was discussed, the friction of PVA-TiO2 hydrogel composites decrease than the PVA hydrogel and friction coefficient up to 0.001. The possible mechanism of friction was discussed

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    Full text link
    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J×B\bm{J}\times\bm{B} effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.Comment: 6 pages, 5 figures, Phys. Plasmas (2013) accepte

    Low Expression of DYRK2 (Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2) Correlates with Poor Prognosis in Colorectal Cancer.

    Get PDF
    Dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2) is a member of dual-specificity kinase family, which could phosphorylate both Ser/Thr and Tyr substrates. The role of DYRK2 in human cancer remains controversial. For example, overexpression of DYRK2 predicts a better survival in human non-small cell lung cancer. In contrast, amplification of DYRK2 gene occurs in esophageal/lung adenocarcinoma, implying the role of DYRK2 as a potential oncogene. However, its clinical role in colorectal cancer (CRC) has not been explored. In this study, we analyzed the expression of DYRK2 from Oncomine database and found that DYRK2 level is lower in primary or metastatic CRC compared to adjacent normal colon tissue or non-metastatic CRC, respectively, in 6 colorectal carcinoma data sets. The correlation between DYRK2 expression and clinical outcome in 181 CRC patients was also investigated by real-time PCR and IHC. DYRK2 expression was significantly down-regulated in colorectal cancer tissues compared with adjacent non-tumorous tissues. Functional studies confirmed that DYRK2 inhibited cell invasion and migration in both HCT116 and SW480 cells and functioned as a tumor suppressor in CRC cells. Furthermore, the lower DYRK2 levels were correlated with tumor sites (P = 0.023), advanced clinical stages (P = 0.006) and shorter survival in the advanced clinical stages. Univariate and multivariate analyses indicated that DYRK2 expression was an independent prognostic factor (P < 0.001). Taking all, we concluded that DYRK2 a novel prognostic biomarker of human colorectal cancer

    Sphingomyelin synthase overexpression increases cholesterol accumulation and decreases cholesterol secretion in liver cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have shown that plasma high density lipoprotein cholesterol levels are negatively correlated with the development of atherosclerosis, whereas epidemiological studies have also shown that plasma sphingomyelin level is an independent risk factor for atherosclerosis.</p> <p>Methods</p> <p>To evaluate the relationship between cellular sphingomyelin level and cholesterol metabolism, we created two cell lines that overexpressed sphingomyelin synthase 1 or 2 (SMS1 or SMS2), using the Tet-off expression system.</p> <p>Results</p> <p>We found that SMS1 or SMS2 overexpression in Huh7 cells, a human hepatoma cell line, significantly increased the levels of intracellular sphingomyelin, cholesterol, and apolipoprotein A-I and decreased levels of apolipoprotein A-I and cholesterol in the cell culture medium, implying a defect in both processes.</p> <p>Conclusions</p> <p>Our findings indicate that the manipulation of sphingomyelin synthase activity could influence the metabolism of sphingomyelin, cholesterol and apolipoprotein A-I.</p
    corecore