8,237 research outputs found

    Three-Dimensional Topological Insulator in a Magnetic Field: Chiral Side Surface States and Quantized Hall Conductance

    Full text link
    Low energy excitation of surface states of a three-dimensional topological insulator (3DTI) can be described by Dirac fermions. By using a tight-binding model, the transport properties of the surface states in a uniform magnetic field is investigated. It is found that chiral surface states parallel to the magnetic field are responsible to the quantized Hall (QH) conductance (2n+1)e2h(2n+1)\frac{e^2}{h} multiplied by the number of Dirac cones. Due to the two-dimension (2D) nature of the surface states, the robustness of the QH conductance against impurity scattering is determined by the oddness and evenness of the Dirac cone number. An experimental setup for transport measurement is proposed

    Turbo-FLASH based arterial spin labeled perfusion MRI at 7 T.

    Get PDF
    Motivations of arterial spin labeling (ASL) at ultrahigh magnetic fields include prolonged blood T1 and greater signal-to-noise ratio (SNR). However, increased B0 and B1 inhomogeneities and increased specific absorption ratio (SAR) challenge practical ASL implementations. In this study, Turbo-FLASH (Fast Low Angle Shot) based pulsed and pseudo-continuous ASL sequences were performed at 7T, by taking advantage of the relatively low SAR and short TE of Turbo-FLASH that minimizes susceptibility artifacts. Consistent with theoretical predictions, the experimental data showed that Turbo-FLASH based ASL yielded approximately 4 times SNR gain at 7T compared to 3T. High quality perfusion images were obtained with an in-plane spatial resolution of 0.85×1.7 mm(2). A further functional MRI study of motor cortex activation precisely located the primary motor cortex to the precentral gyrus, with the same high spatial resolution. Finally, functional connectivity between left and right motor cortices as well as supplemental motor area were demonstrated using resting state perfusion images. Turbo-FLASH based ASL is a promising approach for perfusion imaging at 7T, which could provide novel approaches to high spatiotemporal resolution fMRI and to investigate the functional connectivity of brain networks at ultrahigh field

    Spectroastrometric Reverberation Mapping of Broad-line Regions

    Full text link
    Spectroastrometry measures source astrometry as a function of wavelength/velocity. Reverberations of spectroastrometric signals naturally arise in broad-line regions (BLRs) of active galactic nuclei as a result of the continuum variations that drive responses of the broad emission lines with time delays. Such signals provide a new diagnostic for mapping BLR kinematics and geometry, complementary to the traditional intensity reverberation mapping (RM) technique. We present the generic mathematical formulism for spectroastrometric RM and show that under realistic parameters of a phenomenological BLR model, the spectroastrometric reverberation signals vary on a level of several to tens of microarcseconds, depending on the BLR size, continuum variability, and angular-size distance. We also derive the analytical expressions of spectroastrometric RM for an inclined ring-like BLR. We develop a Bayesian framework with a sophisticated Monte-Carlo sampling technique to analyze spectroastrometic data and infer the BLR properties, including the central black hole mass and angular-size distance. We demonstrate the potential of spectroastrometric RM in spatially resolving BLR kinematics and geometry through a suite of simulation tests. An application to realistic observation data of 3C~273 obtains tentative, but enlightening results, reinforcing the practical feasibility of conducting spectroastrometric RM experiments on bright AGNs with the operating Very Large Telescope Interferometer as well as possibly with the planned next-generation 30m-class telescopes.Comment: 22 pages, 17 figures, 2 tables; ApJ in press; The code BRAINS available at https://github.com/LiyrAstroph/BRAIN
    • …
    corecore