4,951 research outputs found

    Two variants on T2DM susceptible gene HHEX are associated with CRC risk in a Chinese population

    Get PDF
    Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ(2) test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (p< 0.001 for rs1111875, p=0.001 for rs7923837). For rs1111875, increased risk of CRC was observed in TC or TC/CC than CC individuals (p<0.001, OR= 1.780, 95%CI= 1.385-2.287; p<0.001, OR= 1.695, 95%CI= 1.335-2.152). For rs7923837, increased CRC risk was observed in AG, GG, and AG/GG than AA individuals (p< 0.001, OR= 1.520, 95%CI= 1.200-1.924; p=0.036, OR= 1.739, 95%CI= 0.989-3.058; p< 0.001, OR= 1.540, 95%CI= 1.225-1.936). This finding highlights the potentially functional alteration with HHEX rs1111875 and rs7923837 polymorphisms may increase CRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation

    Structure, Luminescence, and Transport Properties of EuVO_4

    Get PDF
    Metastable scheelite EuVO_4 was stabilized by a high temperature and pressure method, which was transformed into a stable zircon phase by annealing treatment in air. Scheelite EuVO_4 gave strong emissions with a dominant peak at 617 nm associated with the ^(5)D_0-^(7)F_2 transition of Eu^(3+). ^(151)Eu Mössbauer spectra indicated that the isomer shift for the metastable scheelite phase was ca. 0.5 mm/s lower than that for the zircon phase, which was ascribed to a reduced covalency in the Eu-O bond originated via a charge transfer from oxygen to Eu3+ in scheelite lattice by producing an enhanced shielding of 4f electrons on the s orbital as well as a decrease in s electron density around Eu^(3+) nucleus. Impedance spectra for the zircon phase clearly demonstrated an ionic hopping in the bulk with a conductivity of ca. 1.0×10^(–3) S cm^(–1) at 500°C. EuVO_4 is proved to be both a potential phosphor and a potential ionic conductor
    • …
    corecore