96 research outputs found

    Quantitative structural analysis of hemifacial microsomia mandibles in different age groups

    Get PDF
    IntroductionThis study aims to quantitively analyze mandibular ramus and body deformities, assessing the asymmetry and progression in different components.MethodsThis is a retrospective study on hemifacial microsomia children. They were divided into mild/severe groups by Pruzansky-Kaban classification and into three age groups (<1 year,1–5 years, 6–12 years old). Linear and volumetric measurements of the ramus and the body were collected via their preoperative imaging data to compare between the different sides and severities, using independent and paired tests, respectively. The progression of asymmetry was assessed by changes in affected/contralateral ratios with age using multi-group comparisons.ResultsTwo hundred and ten unilateral cases were studied. Generally, the affected ramus and body were significantly smaller than those on the contralateral side. Linear measurements on the affected side were shorter in the severe group. Regarding affected/contralateral ratios, the body was less affected than the ramus. Progressively decreased affected/contralateral ratios of body length, dentate segment volume, and hemimandible volume were found.DiscussionThere were asymmetries in mandibular ramus and body regions, which involved the ramus more. A significant contribution to progressive asymmetry from the body suggests treatment focus in this region

    Assembling Hollow Carbon Sphere-Graphene Polylithic Aerogels for Thermoelectric Cells

    Get PDF
    Aerogels are highly porous bulk materials assembled chemically or physically with various nanoscale building blocks and thus hold promise for numerous applications including energy storage and conversion. Assembling of hollow or porous particles with the diameter larger than 100 nm into hierarchically porous aerogels is efficient but challenging for achieving a high specific surface of aerogel. In this regard, submicron-sized carbon spheres with hollow cores and microporous shells are assembled into bulk aerogels, for the first time, in the presence of two-dimensional graphene sheets as special cross-linkers. The resulting bead-to-sheet polylithic aerogels show ultra-low density (51–67 mg cm−3), high conductivity (263–695 S m−1) and high specific surface area (569–609 m2 g−1). An application of thermocells is demonstrated with maximum output power of 1.05 W m−2 and maximum energy conversion efficiency of 1.4% relative to Carnot engine, outperforming the current simple U-shaped thermocells reported elsewhere

    Dielectric barrier discharge-based defect engineering method to assist flash sintering

    Get PDF
    Oxygen vacancy OV plays an important role in a flash sintering (FS) process. In defect engineering, the methods of creating oxygen vacancy defects include doping, heating, and etching, and all of them often have complex processes or equipment. In this study, we used dielectric barrier discharge (DBD) as a new defect engineering technology to increase oxygen vacancy concentrations of green billets with different ceramics (ZnO, TiO2, and 3 mol% yttria-stabilized zirconia (3YSZ)). With an alternating current (AC) power supply of 10 kHz, low-temperature plasma was generated, and a specimen could be treated in different atmospheres. The effect of the DBD treatment was influenced by atmosphere, treatment time, and voltage amplitude of the power supply. After the DBD treatment, the oxygen vacancy defect concentration in ZnO samples increased significantly, and a resistance test showed that conductivity of the samples increased by 2–3 orders of magnitude. Moreover, the onset electric field (E) of ZnO FS decreased from 5.17 to 0.86 kV/cm at room temperature (RT); while in the whole FS, the max power dissipation decreased from 563.17 to 27.94 W. The defect concentration and conductivity of the green billets for TiO2 and 3YSZ were also changed by the DBD, and then the FS process was modified. It is a new technology to treat the green billet of ceramics in very short time, applicable to other ceramics, and beneficial to regulate the FS process

    State Control and the Effects of Foreign Relations on Bilateral Trade

    Get PDF
    Do states use trade to reward and punish partners? WTO rules and the pressures of globalization restrict states’ capacity to manipulate trade policies, but we argue that governments can link political goals with economic outcomes using less direct avenues of influence over firm behavior. Where governments intervene in markets, politicization of trade is likely to occur. In this paper, we examine one important form of government control: state ownership of firms. Taking China and India as examples, we use bilateral trade data by firm ownership type, as well as measures of bilateral political relations based on diplomatic events and UN voting to estimate the effect of political relations on import and export flows. Our results support the hypothesis that imports controlled by state-owned enterprises (SOEs) exhibit stronger responsiveness to political relations than imports controlled by private enterprises. A more nuanced picture emerges for exports; while India’s exports through SOEs are more responsive to political tensions than its flows through private entities, the opposite is true for China. This research holds broader implications for how we should think about the relationship between political and economic relations going forward, especially as a number of countries with partially state-controlled economies gain strength in the global economy

    Ancient Chinese thought, modern Chinese power

    No full text
    corecore