4 research outputs found

    Gram-positive heme acquisition

    Get PDF
    Doctor of PhilosophyBiochemistry and Molecular Biophysics Interdepartmental ProgramPhillip E. KlebbaGram-positive bacteria are characterized by a single lipid bilayer with a thick peptidoglycan layer. This group of organisms contains bacteria commonly associated with human infection, including: Staphylococcus aureus, Listeria monocytogenes, Bacillus anthracis and Streptococcus pneumoniae among others. These bacteria have a common system for importing iron in the form of heme, which is acquired by proteins containing heme-binding NEAT (NEAr iron Transporter) domains. The heme acquisition system in S. aureus is termed the Iron Surface Determinant (Isd) system and in L. monocytogenes is termed Heme Binding Protein (Hbp) and Heme/Hemoglobin Uptake Protein (Hup). These proteins work together to obtain heme from hemoglobin and then transport the heme into the cytoplasm via well characterized ABC-transporters. Although there have been clinical trials with antibodies directed against Isd proteins, there are currently no antibiotics targeting iron uptake systems in bacteria in general. Building upon fluorescent approaches for detection of iron uptake in Gram negative organisms, this work develops fluorescent heme acquisition detection in Gram positive organisms. The spectrofluorimetric methodology facilitates the understanding of heme acquisition protein interactions and mechanisms in bacteria. This work could subsequently be used to identify inhibitors of Gram positive bacterial iron uptake systems, and develop a new target for antibiotic action

    Concerted loop motion triggers induced fit of FepA to ferric enterobactin

    Get PDF
    Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles
    corecore