66,125 research outputs found
Two-Loop Four-Gluon Amplitudes in N=4 Super-Yang-Mills
Using cutting techniques we obtain the two-loop N=4 super-Yang-Mills helicity
amplitudes for four-gluon scattering in terms of scalar integral functions. The
N=4 amplitudes are considerably simpler than corresponding QCD amplitudes and
therefore provide a testing ground for exploring two-loop amplitudes. The
amplitudes are constructed directly in terms of gauge invariant quantities and
therefore remain relatively compact throughout the calculation. We also present
a conjecture for the leading color four-gluon amplitudes to all orders in the
perturbative expansion.Comment: Latex, 13 pages, 9 figures, minor changes to signs in eq.(14
Density matrix renormalization group study of conjugated polymers with transverse pi-conjugation
We report accurate numerical studies of excited state orderings in long
hypothetical pi-conjugated oligomers in which the hydrogen atoms of
trans-polyacetylene are replaced with conjugated sidegroups, within modified
Hubbard models. There exists a range of the bare Coulomb repulsion for which
the excited state ordering is conducive to photoluminescence in the substituted
systems, even as this ordering is opposite in the unsubstituted polyenes of the
same lengths. Our work provides motivation to study real pi-conjugated polymers
with transverse conjugation and small optical gaps.Comment: 5 pages, 4 fig
Palmatine inhibits TRIF-dependent NF-kB pathway against inflammation induced by LPS in goat endometrial epithelial cells
Anisotropic Polarizability of Ultracold Polar KRb Molecules
We report the measurement of the anisotropic AC polarizability of ultracold
polar KRb molecules in the ground and first rotationally excited
states. Theoretical analysis of the polarizability agrees well with
experimental findings. Although the polarizability can vary by more than 30%, a
"magic" angle between the laser polarization and the quantization axis is found
where the polarizability of the and the states
match. At this angle, rotational decoherence due to the mismatch in trapping
potentials is eliminated, and we observe a sharp increase in the coherence
time. This paves the way for precise spectroscopic measurements and coherent
manipulations of rotational states as a tool in the creation and probing of
novel quantum many-body states of polar molecules.Comment: 4 pages for main text, 4 figures, 2 pages for supplementary
informatio
Quantum Logic Network for Probabilistic Teleportation of Two-Particle State of General Form
A simplification scheme of probabilistic teleportation of two-particle state
of general form is given. By means of the primitive operations consisting of
single-qubit gates, two-qubit controlled-not gates,
Von Neumann measurement and classically controlled operations, we construct
an efficient quantum logical network for implementing the new scheme of
probabilistic teleportation of a two-particle state of general form.Comment: 9 pages, 2 figure
Attributes and action recognition based on convolutional neural networks and spatial pyramid VLAD encoding
© Springer International Publishing AG 2017.Determination of human attributes and recognition of actions in still images are two related and challenging tasks in computer vision, which often appear in fine-grained domains where the distinctions between the different categories are very small. Deep Convolutional Neural Network (CNN) models have demonstrated their remarkable representational learning capability through various examples. However, the successes are very limited for attributes and action recognition as the potential of CNNs to acquire both of the global and local information of an image remains largely unexplored. This paper proposes to tackle the problem with an encoding of a spatial pyramid Vector of Locally Aggregated Descriptors (VLAD) on top of CNN features. With region proposals generated by Edgeboxes, a compact and efficient representation of an image is thus produced for subsequent prediction of attributes and classification of actions. The proposed scheme is validated with competitive results on two benchmark datasets: 90.4% mean Average Precision (mAP) on the Berkeley Attributes of People dataset and 88.5% mAP on the Stanford 40 action dataset
- …
