20,259 research outputs found

    Decoupling of the superconducting and magnetic (structural) phase transitions in electron-doped BaFe2As2

    Full text link
    Study and comparison of over 30 examples of electron doped BaFe2As2 for transition metal (TM) = Co, Ni, Cu, and (Co/Cu mixtures) have lead to an understanding that the suppression of the structural/antiferromagnetic phase transition to low enough temperature in these compounds is a necessary condition for superconductivity, but not a sufficient one. Whereas the structural/antiferromagnetic transitions are suppressed by the number of TM dopant ions (or changes in the c-axis) the superconducting dome exists over a limited range of values of the number of electrons added by doping (or values of the {a/c} ratio). By choosing which combination of dopants are used we can change the relative positions of the upper phase lines and the superconducting dome, even to the extreme limit of suppressing the upper structural and magnetic phase transitions without the stabilization of low temperature superconducting dome

    Physical and magnetic properties of Ba(Fe1x_{1-x}Rux_x)2_2As2_2 single crystals

    Full text link
    Single crystals of Ba(Fe1x_{1-x}Rux_x)2_2As2_2, x<0.37x<0.37, have been grown and characterized by structural, magnetic and transport measurements. These measurements show that the structural/magnetic phase transition found in pure BaFe2_2As2_2 at 134 K is suppressed monotonically by Ru doping, but, unlike doping with TM=Co, Ni, Cu, Rh or Pd, the coupled transition seen in the parent compound does not detectably split into two separate ones. Superconductivity is stabilized at low temperatures for x>0.2x>0.2 and continues through the highest doping levels we report. The superconducting region is dome like, with maximum Tc_c (16.5\sim16.5 K) found around x0.29x\sim 0.29. A phase diagram of temperature versus doping, based on electrical transport and magnetization measurements, has been constructed and compared to those of the Ba(Fe1x_{1-x}TMx_x)2_2As2_2 (TM=Co, Ni, Rh, Pd) series as well as to the temperature-pressure phase diagram for pure BaFe2_2As2_2. Suppression of the structural/magnetic phase transition as well as the appearance of superconductivity is much more gradual in Ru doping, as compared to Co, Ni, Rh and Pd doping, and appears to have more in common with BaFe2_2As2_2 tuned with pressure; by plotting TS/TmT_S/T_m and TcT_c as a function of changes in unit cell dimensions, we find that changed in the c/ac/a ratio, rather than changes in cc, aa or V, unify the T(p)T(p) and T(x)T(x) phase diagrams for BaFe2_2As2_2 and Ba(Fe1x_{1-x}Rux_x)2_2As2_2 respectively.Comment: 16 pages, 10 figure

    Effects of Co substitution on thermodynamic and transport properties and anisotropic Hc2H_{c2} in Ba(Fe1x_{1-x}Cox_x)2_2As2_2 single crystals

    Full text link
    Single crystalline samples of Ba(Fe1x_{1-x}Cox_x)2_2As2_2 with x<0.12x < 0.12 have been grown and characterized via microscopic, thermodynamic and transport measurements. With increasing Co substitution, the thermodynamic and transport signatures of the structural (high temperature tetragonal to low temperature orthorhombic) and magnetic (high temperature non magnetic to low temperature antiferromagnetic) transitions are suppressed at a rate of roughly 15 K per percent Co. In addition, for x0.038x \ge 0.038 superconductivity is stabilized, rising to a maximum TcT_c of approximately 23 K for x0.07x \approx 0.07 and decreasing for higher xx values. The TxT - x phase diagram for Ba(Fe1x_{1-x}Cox_x)2_2As2_2 indicates that either superconductivity can exist in both low temperature crystallographic phases or that there is a structural phase separation. Anisotropic, superconducting, upper critical field data (Hc2(T)H_{c2}(T)) show a significant and clear change in anisotropy between samples that have higher temperature structural phase transitions and those that do not. These data show that the superconductivity is sensitive to the suppression of the higher temperature phase transition

    Determination of Intrinsic Ferroelectric Polarization in Orthorhombic Manganites with E-type Spin Order

    Get PDF
    By directly measuring electrical hysteresis loops using the Positive-Up Negative-Down (PUND) method, we accurately determined the remanent ferroelectric polarization Pr of orthorhombic RMnO3 (R = Ho, Tm, Yb, and Lu) compounds below their E-type spin ordering temperatures. We found that LuMnO3 has the largest Pr of 0.17 uC/cm^2 at 6 K in the series, indicating that its single-crystal form can produce a Pr of at least 0.6 \muuC/cm^2 at 0 K. Furthermore, at a fixed temperature, Pr decreases systematically with increasing rare earth ion radius from R = Lu to Ho, exhibiting a strong correlation with the variations in the in-plane Mn-O-Mn bond angle and Mn-O distances. Our experimental results suggest that the contribution of the Mn t2g orbitals dominates the ferroelectric polarization.Comment: 16 pages, 4 figure

    Whole-Page Optimization and Submodular Welfare Maximization with Online Bidders

    Get PDF
    In the context of online ad serving, display ads may appear on different types of webpages, where each page includes several ad slots and therefore multiple ads can be shown on each page. The set of ads that can be assigned to ad slots of the same page needs to satisfy various prespecified constraints including exclusion constraints, diversity constraints, and the like. Upon arrival of a user, the ad serving system needs to allocate a set of ads to the current webpage respecting these per-page allocation constraints. Previous slot-based settings ignore the important concept of a page and may lead to highly suboptimal results in general. In this article, motivated by these applications in display advertising and inspired by the submodular welfare maximization problem with online bidders, we study a general class of page-based ad allocation problems, present the first (tight) constant-factor approximation algorithms for these problems, and confirm the performance of our algorithms experimentally on real-world datasets. A key technical ingredient of our results is a novel primal-dual analysis for handling free disposal, which updates dual variables using a “level function” instead of a single level and unifies with previous analyses of related problems. This new analysis method allows us to handle arbitrarily complicated allocation constraints for each page. Our main result is an algorithm that achieves a 1 &minus frac 1 e &minus o(1)-competitive ratio. Moreover, our experiments on real-world datasets show significant improvements of our page-based algorithms compared to the slot-based algorithms. Finally, we observe that our problem is closely related to the submodular welfare maximization (SWM) problem. In particular, we introduce a variant of the SWM problem with online bidders and show how to solve this problem using our algorithm for whole-page optimization.postprin

    Demonstrating Additional Law of Relativistic Velocities based on Squeezed Light

    Full text link
    Special relativity is foundation of many branches of modern physics, of which theoretical results are far beyond our daily experience and hard to realized in kinematic experiments. However, its outcomes could be demonstrated by making use of convenient substitute, i.e. squeezed light in present paper. Squeezed light is very important in the field of quantum optics and the corresponding transformation can be regarded as the coherent state of SU(1; 1). In this paper, the connection between the squeezed operator and Lorentz boost is built under certain conditions. Furthermore, the additional law of relativistic velocities and the angle of Wigner rotation are deduced as well
    corecore