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In the context of online ad serving, display ads may appear on different types of web-pages, where each
page includes several ad slots and therefore multiple ads can be shown on each page. The set of ads that
can be assigned to ad slots of the same page needs to satisfy various pre-specified constraints including
exclusion constraints, diversity constraints, and the like. Upon arrival of a user, the ad serving system needs
to allocate a set of ads to the current web-page respecting these per-page allocation constraints. Previous
slot-based settings ignore the important concept of a page, and may lead to highly suboptimal results in
general. In this paper, motivated by these applications in display advertising and inspired by the submodular
welfare maximization problem with online bidders, we study a general class of page-based ad allocation
problems, present the first (tight) constant-factor approximation algorithms for these problems, and confirm
the performance of our algorithms experimentally on real-world data sets.

A key technical ingredient of our results is a novel primal-dual analysis for handling free-disposal, which
updates dual variables using a “level function” instead of a single level, and unifies with previous analy-
ses of related problems. This new analysis method allows us to handle arbitrarily complicated allocation
constraints for each page. Our main result is an algorithm that achieves a 1 − 1

e
− o(1) competitive ra-

tio. Moreover, our experiments on real-world data sets show significant improvements of our page-based
algorithms compared to the slot-based algorithms.

Finally, we observe that our problem is closely related to the submodular welfare maximization (SWM)
problem. In particular, we introduce a variant of the SWM problem with online bidders, and show how to
solve this problem using our algorithm for whole page optimization.
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1. INTRODUCTION
With a multi-billion dollar market, display-related advertising – including banner ads,
rich media, digital video and sponsorships – is a fast growing business that accounts
for approximately 37% of Internet advertising [PwC and IAB 2011]. Unlike sponsored
search advertising, display ads on the Internet are often sold in bundles of thousands
or millions of impressions1 over a particular time period. Advertisers pay the website
publisher per impression and buy them ahead of time via contracts, often specifying
a subset of pages on which they would like their ads to appear, or a type of users
they wish to target. The terms of these contracts may vary among advertisers and
publishers but usually include a number of impressions to be assigned to a particular
advertiser.

Display ad serving systems that assign ads to pages on behalf of web publishers must
satisfy the contracts with advertisers, respecting targeting criteria and delivery goals.
Modulo this, publishers try to allocate ads intelligently to maximize overall quality
(measured, for example, by clicks). This has been modeled in the literature as an online
allocation problem, where quality is represented by edge weights, and contracts are
enforced by overall delivery constraints [e.g., Feldman et al. 2009a; Mehta et al. 2007;
Buchbinder et al. 2007].

Display ads may appear on different types of pages (like sport, finance, or news
sites) owned by a web publisher. In most cases, each page includes several ad slots and
therefore multiple ads can be shown on each page. The set of ads that can be assigned
to ad slots of the same page needs to satisfy various pre-specified constraints. One
reason for this is that display ads are often used for brand advertising, in contrast
to sponsored search ads, in which the goal is to get the user to take an immediate
action. For example, when a user explicitly searches for “car rentals”, both Hertz and
Enterprise may wish for their ad to be shown (even and perhaps especially if their
competitor’s ad is shown, as they might otherwise lose a sale). On the other hand,
when a user is viewing a sports website, Nike and Reebok might prefer that their
ads not appear together. The set of constraints in display ads often includes (but not
limited to):

— Exclusion constraints: Advertisers can have competitive relationships. One often
needs to impose the constraint that if some slots are allocated to one advertiser, no
slots are given to any of its competitors.

— All-or-nothing constraints: Some advertisers require that all or none of a set of re-
lated ads be shown on the same page. This is particularly common when ads reinforce
each other.

— Diversity constraints: Publishers often want to diversify the ads shown to a user
for each page. One way to do this is to form a hierarchical category of advertisers,
and for each sub-category (possibly even containing a single advertiser) at each level,
impose an upper bound on the number of impressions that can be allocated to adver-
tisers within this sub-category.

As a result, the online optimization problem that the ad serving system must solve
requires satisfying such complex page-level constraints. Previous research in online
ad allocation and online matching ignores these important per-page constraints, and if
applied directly to the page-based problem, may result in highly suboptimal outcomes.
(It is easy to construct examples with either exclusion or all-or-nothing constraints
with a competitive ratio that becomes worse linearly with the number of slots on a
page.)

1The exposure of a user to a display ad on a web-page is called an “impression”.
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In this paper, we formally study page-based online ad allocation considering general
allocation constraints with multiple ads per each page, and develop the first constant-
factor competitive algorithms for these problems. In particular, assuming that the ca-
pacity of each ad is large, we develop a 1 − 1

e − o(1)-approximation for this problem.
Furthermore, we show that our problems are closely related to the submodular wel-
fare maximization (SWM) problem with online bidders, and our online algorithms also
imply the same competitive ratio for the SWM problem with online bidders. Below, we
first define these problems and summarize our results.

1.1. Problems and Results
In this paper, we define the whole page optimization problem (with free disposal). In
this problem we have a finite set of advertisers A, and a finite set of online pages P ,
where each page consists of a (small) set Ip of impressions (or slots). For each page
p, we have a family Cp of feasible alloctions, and for each feasible allocation C ∈ Cp
of page p, each advertiser a may derive a value of wp,C,a. An advertiser derives value
from the top na best impressions she receives, where na is the number of impressions
sold to her by contract. The only assumption about the Cp’s is that we have access
to a demand oracle: given a cost βa for allocating an impression to each advertiser a,
the demand oracle returns the configuration that maximizes the total value minus the
total cost:

arg max
C∈Cp

{∑
a

wp,C,a − βanp,C,a
}
,

where np,C,a is the number of impressions allocated to a in configuration C. It is easy
to construct polynomial-time demand oracles for most natural allocation constraints
in this context like the exclusion, all-or-nothing, and diversity constraints described in
the previous section. Note that we allow the value of an advertiser for an impression to
depend on other ads shown in the page. Such a dependent-value model can model the
fact that users’ attention to a particular display ad on a page may depend on the whole
set of ads on that page. Considerable research in advertising supports the idea that
multiple ads in proximity affect how each ad is perceived; see, for instance, [Burke and
Srull 1988; Mandese 1991; Keller 1991; Kent and Allen 1994] for such work in classical
advertising, and [Athey and Ellison 2011; Aggarwal et al. 2008; Kempe and Mahdian
2008] for models for sponsored search ads.

In the online version of the problem, the pages arrive online one by one and a feasible
allocation for a page must be chosen immediately upon its arrival. This choice cannot
be changed later.

As the main result in this paper, assuming that the capacities na are suffi-
ciently large, we present a 1− 1

e − o(1)-competitive algorithm for the whole
page optimization problem.

This is also the optimal competitive ratio achievable. Without the assumption on large
capacities na, the competitive ratio of our algorithm is 1/2. (See Section 3 for details).
Further, our algorithms are eminently practical; we implemented and tested them on
real data, and obtained improvements, over the algorithm of [Feldman et al. 2009a],
(with different constraint levels) averaging 10 to 19%, and ranging up to 31 to 54%.
See Section 5 for details.

Relationship to Online Submodular Welfare Maximization. Submodular Welfare
Maximization is a well-studied problem in which a set V of items should be partitioned
and allocated to a set A of bidders, each of whom has a submodular valuation function
fi; the goal is to maximize the total social welfare

∑
i∈A fi(Vi). The offline variant of

ACM Transactions on Economics and Computation, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:4 Devanur, Huang, Korula, Mirrokni, and Yan

this problem is well studied and it admits a 1 − 1
e -approximation algorithm [see Von-

drak 2008]. Commonly, the online version of the problem is concerned with the case
where the items arrive online. In this paper, we propose a different version, where
agents arrive online. In this online agent setting, given an offline set of items, bidders
arrive online each with a monotone submodular (valuation) function over items. Upon
arrival of each bidder, we assign an unconstrained subset of items to the bidder, allow-
ing previously assigned items to be re-assigned to the current bidder. However, we may
not assign or re-assign items to previous bidders. (This is in spirit similar to the liter-
ature on online allocations with buy-back by [Feige et al. 2008; Constantin et al. 2009;
Babaioff et al. 2009].) Our goal is to maximize welfare or total value of bidders at the
end of the process. We show that the SWM problem with online bidders can be reduced
to a special case of whole page optimization, and thus, we have the same competitive
ratio for this problem. Moreover, if we have a multiset of items with many copies of
each item, and no bidder wants more than a small number of copies of any item, the
competitive ratio improves to 1 − 1

e − o(1). One can also implement this algorithm in
polynomial time given demand oracle access to the valuation functions. To the best of
our knowledge, this is the first competitive algorithm known for this natural online
variant of the SWM problem.

1.2. Algorithm and Technique
The algorithm uses the primal-dual technique that has been used extensively for dif-
ferent generalizations of the online bipartite matching problem. The general format of
such an algorithm is that it maintains a discount factor βa for each advertiser a. For
an allocation C, if advertiser a is assigned np,C,a slots and receives total value wp,C,a,
we discount the value wp,C,a by an amount of np,C,a · βa. Formally, the format of the
algorithm is as follows:

(1) Initially, βa = 0 for each advertiser a.
(2) For every arriving page, do the following:

(a) Choose feasible allocation C for the page maximizing the discounted value∑
a(wp,C,a − np,C,a · βa)

(b) Allocate according to C.
(c) Update βa accordingly.

In order to define the final algorithm, it remains only to actually define the rule to
update the discount factor βa. The discount factors βa’s are interpreted as (a subset
of) dual variables of a natural LP relaxation of the problem. The proof that such an
algorithm is 1− 1/e competitive requires two things, that the βa’s can be extended (by
setting the remaining dual variables accordingly) to a feasible dual solution and that
the total primal and dual objective values are within a factor of 1− 1/e.

Even though this technique has been used extensively, we offer new insights into
the application of this technique, in particular for the class of free disposal problems,
introduced by [Feldman et al. 2009a]. We first recount the state of the art in our un-
derstanding of this very important technique. Several variants of the online bipartite
matching problem have had a 1 − 1/e competitive algorithm, albeit from seemingly
different techniques. Some of the notable examples are as follows.

— The ranking algorithm of [Karp et al. 1990] for the online bipartite matching prob-
lem.

— A generalization of the ranking algorithm for the vertex weighted online bipartite
matching problem, due to [Agarwal et al. 2011].
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— The Adwords problem with small bids, due to [Mehta et al. 2007; Buchbinder
et al. 2007], generalizing the online b−matching problem of [Kalyanasundaram and
Pruhs 2000].

— The greedy algorithm for the Adwords problem with small bids and random arrival
order, due to [Goel and Mehta 2008].

Recently [Devanur et al. 2013] gave a unification of all these results by showing how
they all arise from essentially the same dual update function (which we call the expo-
nential update function). They also showed how this update function and the competi-
tive ratio of 1 − 1/e arise as the optimal solution to a particular differential equation.
But the online matching with free disposal problem2 of [Feldman et al. 2009a], which
also had a 1 − 1/e competitive primal-dual algorithm, remained separate from this
unification and seemingly used a different update rule.

An important contribution of this paper is that we resolve this separation
and show how the update function of [Feldman et al. 2009a] can be thought
of as an extension of the exponential update function. Further this perspec-
tive allows us to naturally generalize this technique to the whole page opti-
mization problem.

We now give a brief overview of how we achieve the above. We start with most ba-
sic problem, the online fractional bipartite matching problem, and the primal-dual
analysis of the algorithm based on the exponential update function. The first step is
a new primal-dual proof of the free disposal problem, extending the analysis of the
fractional bipartite matching. The new idea needed for this as follows: the exponential
update rule is based on the “level” of consumption for each advertiser. For the frac-
tional matching problem, the level is the total fraction of edges matched to that vertex,
for the Adwords problem, it is the fraction of the budget consumed by the advertiser.
We extend the concept of level from being a real number to a real valued function from
<+ to itself. In other words, each real number x ∈ <+ has its own level. This is be-
cause we also think of the capacity of an advertiser as a function from <+ to itself. The
capacity at x is the capacity to benefit from an impession of value x. Suppose that an
advertiser has filled his capacity with impressions of value v. Then his capacity at x is
filled for all x ≤ v. However, he still has capacity to benefit from impressions of value
> x. The level at x is simply the level to which the capacity at x is filled. The update
rule is now the integral of the exponential update function of the level at x over the
entire real line.

We next generalize the algorithm to the case where each impression could consume
different amounts of the capacity of an advertiser. We show that instead of thinking
of the level (and the capacity) as a function of the value, we should think of the level
as a function of the density, which is the ratio of the value to the amount of capacity
consumed by an impression. The algorithm and the analysis then extend naturally to
this setting.

Finally we consider the whole page optimization problem. The main new difficulty
here is that a particular allocation C that we have chosen for a page p could count
towards one advertiser but not towards another. This issue does not arise in the ear-
lier problems since each impression is allocated to only one advertiser. This change is
captured in the LP relaxation by having one set of variables that capture the choice
of C for each page and another set of variables that capture whether C is counted to-

2 In this problem, which is a precursor to the whole page optimization problem, impressions arrive online.
Each impression i has a value wia for each advertiser a and advertiser a derives his value from the top na
impressions assigned to him. Any extra impressions allocated to him are ”disposed” off.
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wards the capacity of each advertiser. Due to this, we have a new set of dual variables
that need to be set and dual constraints that need to be satisfied. We show that these
new dual variables have natural interpretations that allow us to extend the technique
to this case. Another difference is that since an allocation now benefits multiple ad-
vertisers, we need to accumulate the “contributions” of all the advertisers to a given
allocation in order to decide the best possible allocation. This is reflected in the way
we choose the allocation, as the one maximizing the total discounted value among all
feasible allocations.

1.3. Related Work
Our work is closely related to the previously studied online ad allocation problems, in-
cluding the Display Ads Allocation (DA) problem [Feldman et al. 2009a, 2010; Agrawal
et al. 2009; Vee et al. 2010], and the AdWords (AW) problem [Mehta et al. 2007; De-
vanur and Hayes 2009]. In both of these problems, the publisher must assign online
impressions to an inventory of ads, optimizing efficiency or revenue of the allocation
while respecting pre-specified contracts. Both of these problems have been studied
in the competitive adversarial model [Mehta et al. 2007; Feldman et al. 2009a; Buch-
binder et al. 2007] and the stochastic random-arrival model [Devanur and Hayes 2009;
Feldman et al. 2010; Agrawal et al. 2009; Vee et al. 2010].

The AW problem [Mehta et al. 2007; Buchbinder et al. 2007; Devanur and Hayes
2009] is related to our online allocation problem and the display ads allocation (DA)
problem. In the AW problem, the publisher allocates impressions resulting from search
queries. Advertiser j has a budget B(j) on the total spend instead of a bound N(j) on
the number of impressions. Assigning impression i to advertiser j consumes w(i, j)
units of j’s budget instead of 1 of the N(j) slots, as in the DA problem. 1 − 1

e -
approximation algorithms have been designed for this problem under the assumption
of large budgets [Mehta et al. 2007; Buchbinder et al. 2007]. In the DA problem, given
a set of m advertisers with a set Sj of eligible impressions and demand of at most N(j)
impressions, the publisher must allocate a set of n impressions that arrive online. Each
impression i has value w(i, j) ≥ 0 for advertiser j. The goal of the publisher is to assign
each impression to one advertiser maximizing the value of all the assigned impres-
sions. The adversarial online DA problem was considered in [Feldman et al. 2009a],
which showed that the problem is inapproximable without exploiting free disposal;
using this property (that advertisers are at worst indifferent to receiving more im-
pressions than required by their contract), a simple greedy algorithm is 1

2 -competitive,
which is optimal. When the demand of each advertiser is large, a (1 − 1

e )-competitive
algorithm exists [Feldman et al. 2009a], and this is tight. None of the previous work for
the adversarial model consider the allocation of multiple ads per page, or general allo-
cation constraints per page. Our primal-dual analysis is based on a new configuration
linear program formulation as it needs to deal with an arbitrary family of allocation
constraints per page, and therefore it is different from all the previous work.

Other than the adversarial model studied in this paper, online ad allocations have
been studied extensively in various stochastic models. In particular, the problem has
been studied in the random order model, where impressions arrive in a random or-
der; and the i.i.d. model in which impressions arrive i.i.d. according to a known or
an unknown distribution. There are two main category of algorithms used in such
stochastic settings: primal techniques and dual techniques. The primal technique is
based on solving an offline allocation problem on the instance that we expect to arrive
according to the stochastic information, and then applying this offline solution on-
line. This technique has been applied to the online stochastic matching problem [Karp
et al. 1990] and in the i.i.d. model with known distributions [Feldman et al. 2009b;
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Menshadi et al. 2011; Haeupler et al. 2011], and resulted in improved competitive
algorithms. The dual technique is based on computing an offline dual solution of an
expected instance, and using this solution online [Devanur and Hayes 2009; Feldman
et al. 2010; Agrawal et al. 2009; Vee et al. 2010]. Following the training-based dual
algorithm of [Devanur and Hayes 2009], training-based (1− ε)-competitive algorithms
have been developed for the DA problem and its generalization to various packing lin-
ear programs [Feldman et al. 2010; Vee et al. 2010; Agrawal et al. 2009]. These papers
develop a (1−ε)-competitive algorithm for online stochastic packing problems in which
OPT
wij
≥ O(m logn

ε2 ) and the demand of each advertiser is large, in the random-order and
the i.i.d model. It is not hard to generalize these techniques to capture the stochas-
tic variant of the page-based ad allocation problem. Recently, improved approximation
algorithms have been proposed for this problem [Karande et al. 2011; Mahdian and
Yan 2011] in the random order model for unweighted graphs. Other than the above,
online adaptive optimization techniques have been applied to online stochastic ad al-
location [Tan and Srikant 2011; Devanur et al. 2011]. Such control-based adaptive
algorithms achieve asymptotic optimality following an updating rule inspired by the
primal-dual algorithms, but they do not achieve any bounded approximation factor for
the adversarial model.

While these techniques provide improved approximation factors for stochastic mod-
els, they do not provide guaranteed approximations in the adversarial model. (How-
ever, this was achieved for the unweighted matching problem in [Mirrokni et al. 2011].)
In reality, there are unexpected traffic spikes and dips and it is desirable to have an
algorithm that can cope with such surprises. Our theoretical study of the whole page
optimization problem in adversarial settings along with our experimental results for
real-world data show that our algorithm satisfies these desirable properties.

2. ONLINE FRACTIONAL ASSIGNMENT
In this section, we describe (1 − 1/e)-competitive algorithms for the online weighted
matching and online generalized assignment problems with free disposal. These re-
sults were previously known from [Feldman et al. 2009a], but we analyze them here
as a warm-up to the whole page optimization problem, and to demonstrate our unifying
analysis. Key to our analysis is the Linear Program for weighted matching.

LP Formulation. Let xia be the indicator of allocating impression i to advertiser a.
We will consider the following standard primal and dual linear programs of the online
matching problem:

Maximize
∑
i,a

wiaxia Minimize
∑
a

naβa +
∑
i

αi

∀i :
∑
a

xia ≤ 1 ∀i, a : βa + αi ≥ wia

∀a :
1

na

∑
i

xia ≤ 1 ∀i, a : xia, αi, βa ≥ 0

(1)

2.1. Online bipartite fractional matching
A special case of the above problem is when the weights are either 0 or 1, and the ca-
pacity constraints are all 1. The instance can be thought of as a bipartite graph with
advertisers on one side and impressions on the other, with an edge between them iff
wia = 1. An allocation for such an instance is a matching in the bipartite graph. We
actually consider fractional allocations here; a fractional allocation allows the alloca-
tion of an impression to an advertiser to be any real number in [0, 1] with the sum of
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these “fractions” being no more than 1. The capacity constraints for the advertisers
are that the sum of the fractions allocated to each advertiser is no more than his ca-
pacity. This is simply a solution to the LP relaxation (1). For this problem, one does
not need free disposal since all the edge weights are 1. It is well known that there is a
simple primal-dual algorithm for this problem with a 1− 1/e competitive ratio. One of
the goals of this paper is to point out how the algorithm and the analysis for the free
disposal problem relates to that of the bipartite matching problem. We sketch a quick
proof for the bipartite matching problem now. We use γ to denote the competitive ratio,
which will be 1− 1/e. The algorithm builds primal and dual solutions so that

(1) The cost of the primal solution is at least γ times the cost of the dual solution.
(2) The dual constraint βa + αi ≥ 1 is feasible for all impressions seen so far.

It is easy to see that these two properties imply that the algorithm is γ-competitive.
We must now describe how to actually construct primal and dual solutions to sat-

isfy these properties. In the beginning, all the primal and the dual variables are zero,
hence primal and dual costs are both zero; thus the two properties are satisfied. The
algorithm allocates impressions in a continuous process and we describe this process
by specifying how primal and dual variables change as an infinitesimal quantity of an
impression is allocated at any time. The dual variables, βa’s and αi’s are monotonically
non-decreasing and are also changing continuously. When we allocate an infinitesimal
quantity dx of an impression i to advertiser a, the primal cost increases by dx. The
increase in the dual cost will then have to satisfy dβa + dαi ≤ dx/γ; this maintains the
invariant that the primal and dual costs are within a factor γ throughout, satisfying
the first desired property.

Whenever there is an opportunity to allocate dx of impression i to an advertiser,
there is up to dx/γ of the dual cost to go around. Different advertisers “offer” different
ways to split this dual cost between the βa’s and αi. The dx fraction of the impression is
then allocated to the advertiser(s) who makes the highest offer for dαi. The offer made
by an advertiser depends on the value of βa he has already accumulated up to that
point; this is because each advertiser tries to make sure that his own dual constraint
is satisfied, that is βa + αi ≥ 1. A lower βa means that the advertiser needs to offer
a higher amount. A natural choice (to help ensure dual feasibility, as we will show in
Lemma 2.1) is to offer dαi = (1−βa)dx. To achieve dβa+ dαi = dx/γ, then, we must set
dβa = (1/γ − 1 + βa)dx.

This differential equation in the dual variable βa means that βa will then be a func-
tion of the total fraction of impressions allocated to a, which is ya :=

∑
i xia. Let us de-

note the dependence of βa on ya as βa = G(ya) for some monotonically non-decreasing
function G(·). We denote the rate of change of βa, dβa/dya by g(ya). That is, we can
rewrite this equation as:

g(y)−G(y) = 1/γ − 1. (2)

With this notation, at any point advertiser a offers to split dx/γ as dβa = g(ya)dx
and dαi = (1 − βa)dx = (1 − G(ya))dx. Equation (2) restricts our choice of g(x) to be
exponential; the particular functions we use are g(x) = ex−1/γ and G(x) =

∫ x
0
g(y)dy =

(ex−1 − e−1)/γ. This gives G(1) = 1, which means that when ya = 1, which is when the
advertiser’s capacity is exhausted, his offer is 1−G(1) = 0. This is by design, since once
the advertiser’s capacity is exhausted we don’t want to allocate any more impressions
to him. In fact, our choice ofG(·) is the function that satisfies (2) for the largest possible
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constant γ, subject to the boundary constraint of G(1) = 1. With this background, we
now define the algorithm:
ALGORITHM 1: Online Bipartite Fractional Matching
Initialize all βa’s and αi’s to be zero;
for each impression i that arrives do

while
∑
a xia < 1 and ya < 1 for some a s.t. wia = 1 do

Allocate a dx amount of i to each a in argmaxa:wia=1{1− βa};
If dx of i is allocated to a, then increment βa and αi respectively by

dβa = g(ya)dx and dαi = (1− βa)dx .

end
end

The fact that this algorithm is γ-competitive follows from the two properties men-
tioned earlier, that the primal and the dual are within a factor of γ and that duals are
feasible. The first follows immediately from (2) since whenever we allocate dx of i to a,
the dual increase is (g(ya) + 1 − G(ya))dx = dx/γ. The proof that the second property
also holds is as follows.

LEMMA 2.1. For all a and i such that wia = 1, the dual variables βa and αi at the
end of the algorithm are such that

βa + αi ≥ 1.

PROOF. Consider the value of ya =
∑
i xia at the end of the algorithm. βa at the end

is equal to G(ya). If ya = 1, then βa = G(1) = 1 and αi ≥ 0 and the lemma follows.
Suppose that ya < 1. Then the while loop for i must have ended with

∑
a xia = 1. Also,

throughout the loop dαi/dx must have been at least 1 − βa, since βa is monotonically
non-decreasing. Therefore αi ≥ 1− βa.

Since any feasible dual solution is an upper bound on the optimum offline solution, the
competitive ratio follows.

THEOREM 2.2. The algorithm is γ-competitive, with γ = 1− 1/e.

2.2. Online Weighted Matching with Free Disposal
We now extend the algorithm and the analysis of the bipartite matching problem to
the fractional version of the free disposal problem. One difference between the two
problems is that in the free disposal problem, different impressions have different
weights. Following the same framework as before, this means that the offer from ad-
vertiser awould depend on wia; since we have to ensure feasiblity of the dual constraint
αi+ βa ≥ wia, the natural choice is that advertiser a offers dαi = (wia− βa)dx. Another
difference is that the increase in the primal on allocating dx of impression i to a is not
always wiadx, since a might have to discard some of its previously allocated impres-
sions. If a discards dx of i′ in order to accommodate dx of i, then the increase in the
primal is (wia−wi′a)dx. The increment in βa will then be ((wia−wi′a)/γ −wia+ βa)dx.
Now βa is no more simply a function of ya = 1

na

∑
i xia. In fact, once ya = 1, it stays

there but βa continues to increase as we allocate new impressions to a and discard
older ones. βa would be a function of the history of allocations to a, which would make
the analysis rather complicated. We next present the key idea that makes sure that
the analysis remains essentially the same as before, with a small extension.

Recall that earlier the offer of advertiser a was a function of ya, which is the “level”
to which his capacity was exhausted. The main idea, which allows this concept to be
easily generalized to the free disposal problem (and beyond), is that instead of thinking
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ya(w)

w1 w2 w3

1

ww40

dx

dx

dx

Fig. 1. Suppose advertiser a’s capacity is fully occupied with minimal weight w1. Further, some of the
impressions have weight w2 and some other have weight w3. Then, allocating a dx amount of an impression
with weight w4 to a results in an increase in ya(w) by dx for w1 < w ≤ w4.

of the level as a single number, we think of there being a level for every non-negative
real number in [0,∞). Imagine that there is a capacity of 1 for each w ∈ [0,∞) and the
level corresponding to w is the amount of capacity exhausted corresponding to w. (This
is depicted in Figure 1.) To be precise, let

ya(w) =
1

na

∑
i:wia≥w

xia.

As we will show, we can define βa to be a function of ya(·); in fact it is the most natural
generalization:

βa =

∫ ∞
0

G(ya(w))dw. (3)

It is easy to see that in the unweighted case, this reduces to the earlier definition of
βa = G(ya). Suppose now that when an impression i arrives, a would have to discard
i′ in order to accept i. Here, i′ is the impression with the smallest weight that is still
allocated to a, i.e. argmini{wia : xia > 0}. If

∑
i xia < 1 then let i′ be a dummy bidder

with wi′a = 0. If a dx amount of i is allocated to a, then the increase in the primal is
(wia−wi′a)dx. One of the difficulties (a priori) with the free disposal problem is that the
primal rate of increase is wia−wi′a but the dual constraint is still βa+αi ≥ wia. With the
definition of βa as in (3) above, it is easy to see that this does not cause any problems.
βa has already accounted for the weight wi′a since ya(w) = 1 for all w ∈ [0, wi′a] and∫ wi′a

0

G(ya(w))dw =

∫ wi′a

0

1dw = wi′a.

With this observation, the offer of a to i, can be rewritten as
dαi
dx

= wia − βa =

∫ wia

wi′a

(1−G(ya(w)))dw −
∫ ∞
wia

G(ya(w))dw ≤
∫ wia

wi′a

(1−G(ya(w)))dw.

The rate of increase in βa w.r.t dx is
dβa
dx

=

∫ wia

wi′a

g(ya(w))dw
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since ya(w) increases by dx precisely in the interval [wi′a, wia] and remains unchanged
everywhere else. Therefore the total rate of increase in the dual cost is

dαi
dx

+
dβa
dx
≤
∫ wia

wi′a

(1−G(ya(w)) + g(ya(w))) dw =

∫ wia

wi′a

1

γ
dw =

wia − wi′a
γ

. (4)

Therefore the primal and the dual rates of increase are within a factor of γ. With
this, we now define the algorithm in Algorithm 2.
ALGORITHM 2: Online Weighted Matching with Free Disposal
Initialize all βa’s and αi’s to be zero;
For each a, create na dummy impressions with zero weight and allocate them completely to a;
for each impression i that arrives do

while
∑
a xia < 1 and βa < wia for some a do

Allocate a dx amount of i to each a in

argmax
a:ya(wia)<1

{wia − βa} .

If dx of i is allocated to a, then increment βa and αi respectively by

dβa =

(∫ wia

wi′a

g(ya(w))dw

)
dx and dαi = (wia − βa) dx ,

where for each a, the i′ in the lower limit of the integral is in argmini{wia : xia > 0};
Decrease xi′a by dx;

end
end

As before we need to prove that primal and dual costs are within γ and dual feasi-
bility. The proof goes along the same lines as before.

LEMMA 2.3. The following are invariants throughout the algorithm.

(1) For all a, 1
na

∑
i xia = 1.

(2) For all a, equation (3) holds.
(3) The primal and dual are within a factor of γ.

PROOF. For (1), the statement is true initially due to the allocation of the dummy
impressions. Subsequently whenever we allocate a dx amount of an impression i to
a, we discard an equal amount of another impression i′. Therefore the invariant is
maintained throughout.

For (2), suppose Eq. (3) holds before the arrival of impression i. Consider a step in
the algorithm where dx of i is allocated to a for some i, and an equal amount of i′ is
discarded. wia is strictly greater than wi′a, since otherwise βa ≥ wia by Eq. (3). Note
that for all w ∈ [0, wi′a], y(w) = 1 by the definition of i′ and y(w) does not change due to
the step. Also for all w ∈ (wia,∞], y(w) does not change. Finally, for all w ∈ (wi′a, wia],
ya(w) increases by dx.

Recall that in this step βa is incremented by dβa =
(∫ wia

wi′a
g(ya(w))dw

)
dx. By the

above argument, this increment can be written as

dβa =

∫ ∞
0

(
g(ya(w))dya(w)

)
dw =

∫ ∞
0

dG(ya(w))dw .

Therefore Eq. (3) continues to hold.
Proof of (3): We already argued this and proved it in Eq. (4).
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LEMMA 2.4. For all a and i, the dual variables βa and αi at the end of the algorithm
are such that

βa + αi ≥ wia.
PROOF. Consider the value of ya(·) at the end of the algorithm. If βa ≥ wia, then by

αi ≥ 0 the lemma follows. If βa < wia, then the while loop for i must have ended with∑
a xia = 1. Throughout the loop dαi/dx must have been at least wia − βa, since βa is

monotonically non-decreasing. Therefore αi ≥ wia − βa.

THEOREM 2.5. Algorithm 2 is γ-competitive, with γ = 1− 1/e.

3. CONFIGURATIONS
We now consider a generalization of the problem where multiple advertisements can
be shown on a single page. It is the pages which arrive online, instead of impressions
as before. A page has multiple distinct slots in which ads can be placed and a configu-
ration of ads for a page specifies which ad is shown in each slot. The same ad (or ads
from the same advertiser) may be shown on multiple slots on the same page. There
may be rules about which configurations are allowed; for each page p we denote the set
of feasible configurations for that page by Cp. The value derived by an advertiser may
depend not only on where his own ads are shown, but also on which ads are shown
in the other slots. In other words it depends on the entire configuration of ads. For a
configuration C ∈ Cp the value derived by advertiser a is denoted by wp,C,a.

For an advertiser a, the number of different slots his ad is shown in configuration
C on page p is denoted by np,C,a. We also refer to this as the number of impressions
allocated. Advertiser a has a bound na on the total number of impressions that can
be allocated to him. The free disposal version of this is that he can be allocated more
impressions, but we only count the top na impressions towards the objective function.
A given configuration may be counted towards one advertiser and be not counted to-
wards another. The configurations are picked online and cannot be changed later, but
the accounting of which impressions to count towards an advertiser may be changed.
In particular, the algorithm adds new impressions to this pool of top na impressions
and drops some of the ones picked earlier. Once an impression is dropped it is never
considered again.

Let cp,C,a := np,C,a/na. The following is an LP relaxation for the above problem,
and its dual. The variable zp,C indicates whether configuration C is chosen for page p.
The variable xp,C,a indicates whether the impressions in configuration C on page p are
counted towards the top na impressions for advertiser a.

Maximize
∑
p,C,a

wp,C,a · xp,C,a Minimize
∑
a

βa+
∑
p

αp

∀a :
∑
p,C

cp,C,a · xp,C,a ≤ 1 ∀p, C, a : δp,C,a + cp,C,a · βa ≥ wp,C,a

∀p, C, a : xp,C,a ≤ zp,C ∀p, C : αp ≥
∑
a

δp,C,a

∀p :
∑
C∈Cp

zp,C ≤ 1 ∀p, C, a : xp,C,a, zp,C , αp, βa, δp,C,a ≥ 0

As before we will consider the fractional version of the problem, which is just a
solution to the LP above. This can be easily extended to the integral version when the
na’s are all large.
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The main new component introduced by this problem is that multiple advertisers
can benefit from one configuration. The concept of offers used earlier extends naturally
here: each advertiser makes an offer for each of the configurations, based on his value
for the configuration and his level function. The configuration chosen is simply the
one for which the sum of the offers of all the advertisers is the highest. Another new
aspect in this problem is that there are new dual variables, namely δp,C,a. These simply
capture the offer made by each advertiser for each configuration and don’t appear
in the objective function. Except for these small modifications the algorithm and the
analysis is almost identical to the previous case with densities.

When a page p arrives, suppose we were to allocate dx of the page to the configuration
C ∈ Cp. Then each advertiser potentially gets an additional value of wp,C,adx, if this
configuration was better for him than the ones he already has. For a given advertiser
a, suppose he would have to discard dx′ of a previously allocated configuration C ′ on
page p′ in order to accept C. Let ρp,C,a := wp,C,a/cp,C,a; then (p′, C ′) = argminp,C{ρp,C,a :
xp,C,a > 0}. The actual increase in the primal objective value corresponding to a due to
this allocation is then

wp,C,adx− wp′,C′,adx
′ = (ρp,C,a − ρp′,C′,a) · cp,C,adx. (5)

This increase in the primal is split between the dual variables based on the function
ya(·) which as before is defined as follows:3

ya(ρ) =
∑

p,C:ρp,C,a≥ρ

cp,C,a · xp,C,a.

βa is defined in terms of ya as before:

βa =

∫ ∞
0

G(ya(ρ)) dρ. (6)

Now a offers an amount of δp,C,a = wp,C,a−cp,C,a ·βa to each configuration C from which
he can benefit, i.e., each C such that ya(ρp,C,a) < 1. Otherwise, she offers δp,C,a = 0. We
allocate dx amount of a given page p to the configuration C that receives the highest
total offer. The dual variable αp is then incremented by

∑
a δp,C,adx. We can bound

δp,C,a as

δp,C,a = wp,C,a − cp,C,a · βa
= cp,C,a(ρp,C,a − βa)

≤ cp,C,a

∫ ρp,C,a

ρp′,C′,a

(1−G(ya(ρ))) dρ.

since ya(ρp′,C′,a) = 1 and G(ya(ρ)) = 1 for ρ ∈ [0, ρp′,C′,a].
The increase in βa is

dβa
dx

= cp,C,a

∫ ρp,C,a

ρp′,C′,a

g(ya(ρ))dρ

3 Note that configuration C is beneficial to advertiser a iff ya(ρp,C,a) < 1. We will use this notation to filter
only those advertisers for whom a configuration is actually beneficial.
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since ya(·) remains unchanged everywhere except in (ρp′,C′,a, ρp,C,a], and for all ρ in
that interval ya(ρ) increases by cp,C,adx. The total rate of increase in dual is

dαp
dx

+
∑
a

dβa
dx
≤
∑
a

cp,C,a

∫ ρp,C,a

ρp′,C′,a

(1−G(ya(ρ)) + g(ya(ρ))) dρ

=
∑
a

cp,C,a(ρp,C,a − ρp′,C′,a)

γ
,

which is 1/γ times the primal rate of increase, from (5).
A full description of the algorithm is presented in Algorithm 3.

ALGORITHM 3: Free disposal with configurations
Initialize all primal and dual variables to be zero;
Create a dummy page p with a single configuration C such that for all a,wp,C,a = 0 and
cp,C,a = 1. Set xp,C,a = zp,C = 1;
for each page p that arrives do

while
∑
C zp,C < 1 and cp,C,a · βa < wp,C,a for some a and C do

Allocate a dx amount of p to each C (that is, increase zp,C by dx) in

argmax
C

{∑
a

max

{
0, wp,C,a − cp,C,a · βa

}}
.

if dx of p is allocated to C then
Increment αp by

dαp =
∑

a:cp,C,a·βa<wp,C,a

(wp,C,a − cp,C,a · βa) dx.

Increase xp,C,a by dx;
for each a such that cp,C,a · βa < wp,C,a do

Increment βa by

dβa = cp,C,a

(∫ ρp,C,a

ρp′,C′,a

g(ya(ρ))dρ

)
dx ,

where the p′, C′ is in argminp,C{ρp,C,a : xp,C,a > 0};
Decrease ρp′,C′,a by cp,C,adx/cp′,C′,a.

end
end

end
end
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We need to prove that primal and dual costs are within γ and dual feasibility.

LEMMA 3.1. The following are invariants throughout the algorithm:

(1) for all a,
∑
p,C cp,C,a · xp,C,a = 1.

(2) for all a, equation (6) holds.
(3) The primal and dual are within a factor of γ.

The proof is similar to that of Lemma 2.3 and hence omitted.

LEMMA 3.2. For all a, p and C, the dual variables βa, αp and δp,C,a at the end of the
algorithm are such that

(1) cp,C,aβa + δp,C,a ≥ wp,C,a and
(2) αp ≥

∑
a δp,C,a.

PROOF. Consider the first constraint. If for some p, C, a, it so happens that cp,C,a ·
βa < wp,C,a, then it is satisfied by the definition of δp,C,a and the fact that βa is monoton-
ically non-decreasing. Otherwise, δp,C,a = 0 but cp,C,aβa ≥ wp,C,a so the first constraint
is still satisfied.

Consider the second constraint for a given page p. Suppose that the while loop for
that page ends in cp,C,a · βa ≥ wp,C,a for all a and C. Then δp,C,a = 0 for all a,C and
hence the second constraint is trivially satisfied.

Now suppose that the while loop for p ended with
∑
a zp,C = 1. Throughout the

loop dαa/dx only decreases since βa’s are all monotonically non-decreasing. Further,
maxC

∑
a δp,C,a is exactly the value of dαa/dx at the end of the while loop. Therefore

the second constraint is satisfied at the end of the while loop. These dual variables are
not changed after that, so it continues to hold.

THEOREM 3.3. Algorithm 3 is γ-competitve, with γ = 1− 1/e.

4. SUBMODULAR WELFARE MAXIMIZATION WITH ONLINE BIDDERS
In this section, we consider a variant of the Submodular Welfare Maximization (SWM)
problem. Here, items are known offline, and bidders arrive online; this is contrast
to the more well-studied online variant where bidders are known offline and items
arrive online. In our problem, at every time step, a bidder arrives with a monotone
submodular function over items. We then assign an unconstrained subset of items to
the bidder, allowing previously assigned items to be assigned again. However if an
item was assigned to a previous bidder, but is now assigned to a new bidder, the old
bidder is no longer assigned the item. Our goal is to maximize welfare or total value of
bidders at the end of the process.

Note that for this online SWM to make sense, we need to allow one-way reassign-
ment of items since otherwise, no reasonable competitive ratio can be achieved for this
problem. Also it is worth noting that such a reassignment is in spirit similar to the
literature on buy-back [Feige et al. 2008; Constantin et al. 2009; Babaioff et al. 2009],
except that we can buy back for free.

In the following, we show that SWM with online bidders can be reduced to the whole
page optimization setting. In making the connection, the intended meaning of bid-
ders and items in the context of whole page optimization will be reversed. In particu-
lar, items now correspond to offline advertisers, and bidders now correspond to online
pages.

LEMMA 4.1. Given a ρ-competitve algorithm for whole page optimization for arbi-
trary n′as, there is a ρ-competitive algorithm for SWM with online bidders.
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PROOF. Given an instance of SWM with online bidders, we construct a corre-
sponding whole page optimization setting as follows. Let there be m items numbered
1, . . . ,m. For each item j, there is a corresponding advertiser j with capacity one. For
each bidder with a monotone submodular function f(·) over the item set, we construct
a page p with m slots in the following way. For each subset of items S ⊆ {1, . . . ,m},
include a feasible allocation configuration where for all j ∈ S slot j is assigned to
advertiser j, and all slots outside S are not assigned. Furthermore, the value of adver-
tiser j in this configuration is defined as f({1, . . . , j} ∩ S) − f({1, . . . , j − 1} ∩ S). Note
that the values are defined in a way such that the total value of allocated advertisers
in S is equal to f(S), and it follows that the offline versions of both the SWM problem
and the whole page optimization problem have identical solutions and optimal values.

Now given a ρ-approximation algorithm for whole page optimization, we can sim-
ulate it on the above whole page optimization instance using a demand oracle. If an
allocation is chosen, which specifies the set of advertisers that get assigned, then for
each such advertiser, say j, in the online SWM problem we assign the corresponding
item j to the current bidder either if (1) item j wasn’t assigned before, or if (2) the value
by doing this is higher than the value v of item j for the bidder that it was assigned
to previously. In the latter case, let b be the bidder that was assigned the item j, in
whole page optimization, we lose a value of v in accounting for advertiser j, while in
the online SWM problem, by submodularity, bidder b loses a value of at most v. It fol-
lows that at the end of process, the algorithm for online SWM achieves total objective
value that is at least as large as the algorithm for whole page optimization. Since both
problem settings share the same optimal value, our lemma follows.

Our algorithm for whole page optimization can give a 1
2 -approximation even when

capacities of advertisers are small, by setting dαi = dβa = wiadx. It follows that we
have a 1

2 -approximation algorithm for SWM with online bidders. Furthermore, under
the following assumption, whole page optimization gives a 1− 1

e − o(1)-approximation
for this problem: Consider a more general setting where the item set is a multi-set, and
submodularity is defined w.r.t. multi-sets. At every step, the arriving bidder reports a
monotone submodular valuation function defined on the items. For this setting, we
can apply our result for whole page optimization to get (1 − 1

e − o(1))-approximation
assuming that the minimum multiplicity of an item tends to infinity.

Efficient Implementation of the Algorithm. As we noted in the introduction, our al-
gorithm runs efficiently only if we can enumerate all possible configurations on a page
(e.g., if the number of ads per page is a constant), or if we have demand oracle access to
the submodular valuation functions of each bidder. To see this, note that at each step
of agorithms, we need to find a configuration S maximizing

∑
a∈S(va(S) − |Sa|βa) =

f(S)−
∑
a∈S |Sa|βa which is precisely the problem solved by the demand oracle. In up-

dating βa variables while running the algorithm, we also need to compute the value
for each advertiser, and thus we need also to have value oracle access to submodular
valuation functions. However, we know that value oracles can be simulated in polyno-
mial time using demand query oracles [Blumrosen and Nisan 2009]. Therefore, having
demand oracle access to valuation functions is sufficient for implementing the whole
page optimization algorithm in polynomial time.

5. EMPIRICAL EVALUATION
An important motivation behind the whole page optimization problem is the display
ad allocation with whole-page-based constraints. Besides being theoretically optimal,
a key feature of our algorithm is its simplicity and ease of implementation, allowing
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easy empirical evaluation. In this section, we present experimental results, comparing
a whole-page allocation algorithm to the slot-based equivalent.

Experimental Details. Our data sets consist of impressions for 5 (anonymous) pub-
lishers from 2 days in January 2012. The number of daily impressions per publisher
varies from roughly 150,000 to 1,300,000, and the number of advertisers per publisher
is up to several hundred. Advertisers specify complex targeting criteria to define the
set of eligible impressions (giving the bipartite graph between impressions and ad-
vertisers), and the edge weights capture the “targeting quality” (in these experiments,
click probability) of an advertiser for an impression. The specification of all per-page
constraints for each advertiser is non-trivial and hard to describe succinctly; in fact,
many internet advertising services specify constraints differently. We do not describe
all the nuances of the ad-serving system’s constraints, as our goal here is to demon-
strate that significant improvements are possible by considering configurations for the
entire page at once. Therefore, we present results here for the case of only exclusion
constraints (where advertiser a can specify that their ad is not to be shown along with
the ad of competitor b); further, to aid reproducibility of these experiments, we con-
sider randomly generated pairwise exclusions. From the point of view of the online
algorithm, the manner in which exclusions are generated is irrelevant; the algorithm
simply works with the graph specifying which pairs of ads cannot be shown together.
That is, we work with “real” weighted bipartite graphs between impressions and ad-
vertisers (as in previous work [Feldman et al. 2010]), but use randomly generated per-
page constraints. This allows us to (a) demonstrate that the significant improvements
obtained are not due to specific constraints of the advertisers for these publishers, and
(b) investigate how the performance of the algorithm changes with an increase in the
number of constraints.

In every other respect, the experimental setup is as close to a real system as possible;
impressions are considered by the algorithms in the order of the page-views of the
corresponding users to the publishers’ websites. We work with the real capacities /
budget constraints of advertisers, etc.

A separate issue is that in real systems, the algorithms used can be stochastic, or
based on historical data. One could repeat our experiments with a single-slot-at-a-time
stochastic algorithm vs. a page-configuration-based stochastic algorithm. We do not
report on such experiments here, as this paper is focused on worst-case algorithms. A
further advantage of worst-case algorithms is that they can cope with new advertisers,
changing capacities, etc.; for this reason, algorithms used in practice are typically a
hybrid of worst-case and stochastic algorithms; for more details, see [Feldman et al.
2010].

Algorithms. The algorithms we used are essentially similar to those of this pa-
per and the slot-based algorithm of [Feldman et al. 2009a], with a few minor differ-
ences: Our theoretical results assumed that an impression could be infinitesimally
split among multiple advertisers; instead, we discretize the algorithm by assigning an
impression i to a single advertiser a in argmax{wia−βa}, breaking ties arbitrarily. Fur-
ther, the ideal discretization might have a each one of a million impressions contribut-
ing in a slightly different way to βa, all of which must be updated after each allocation;
we bucket these, but this does not significantly affect algorithm performance; this also
helps deal with floating-point issues. For the page-based algorithm, recall that we need
demand oracle access to find the optimal configuration for a page; in practice, we ex-
plicitly solve a (small) integer program to find the optimal configuration that satisfies
the exclusion constraints. Though such an integer program could, in general, require
time exponential in the number of page slots, the number of slots (and advertisers
eligible for each slot) is typically quite small. Generally accepted latency to serve an

ACM Transactions on Economics and Computation, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:18 Devanur, Huang, Korula, Mirrokni, and Yan

0	  

20	  

40	  

60	  

80	  

100	  

0.1	   0.15	   0.2	   0.25	   0.3	   0.35	   0.4	  

Normalized	  Score	  vs	  Constraint	  Probability	  

Slot-‐based	  Algorithm	   Page-‐based	  Algorithm	  

Fig. 2. Performance vs constraint probability, Publisher B

Table I. Normalized scores comparing the slot-based and page-based algorithms for each publisher, and
averaged over all publishers. Scores are normalized for each publisher such that the slot-based algorithm
with constraint probability 0.1 has a score of 100. The average column is a simple average, not weighted by
the number of impressions per publisher.

Pub A Pub B Pub C Pub D Pub E Avg Gain
Prob. Slot Page Slot Page Slot Page Slot Page Slot Page Slot Page
0.1 100 102.7 100 108.8 100 100.8 100 103.4 100 103.9 100 103.9 3.9%

0.15 98.7 102.1 84.9 107.5 97.0 99.3 94.4 100.8 98.4 103.5 94.7 102.6 8.3%
0.2 96.9 101.7 81.4 106.7 94.1 97.9 93.3 100.5 96.5 103.2 92.4 102.0 10.4%

0.25 94.9 101.2 74.4 103.1 89.3 96.0 91.4 99.9 95.5 103.0 89.1 100.6 12.9%
0.3 92.3 100.9 66.2 101.9 82.6 94.5 86.6 98.2 93.1 102.5 84.0 99.6 18.6%

ad request is on the order of 50-100 ms; the authors have in fact used a (specialized)
integer program solver to find the optimal configuration for ‘real’ instances with even
more complex constraints in far less time than this.

Results. For each publisher, we inserted random exclusion constraints between ad-
vertisers with varying probabilities. Since these were the only page-level constraints
considered, at a constraint probability of 0, the two algorithms (page- and slot-based)
are identical. Table I shows the performance of the algorithms on each publisher with
constraint probabilities ranging from 0.1 to 0.3. As one might expect, the performance
of both algorithms decreased (monotonically) with an increase in the constraint proba-
bilities. Note, though, that the decrease as a function of constraint probability is much
more significant for the slot-based algorithm than the page-based one, an average of
16% vs. 4.6%. (Figure 2 illustrates this for 1 publisher). In fact, for 3 out of the 5
publishers, the page-based allocation performance decays so slowly that the score of
the page-based algorithm with constraint probability 0.3 is higher than the slot-based
algorithm with probability 0.1.

Overall, we note a significant gain from using page-based allocation, going from an
average of 3.9% with constraint probability 0.1 to an average of 18.6% with constraint
probability 0.3. There is, of course, considerable variation among publishers; at a con-
straint probability of 0.2, the gain from using page-based allocation ranges from 3.88%
to 31.08%, and at a constraint probability of 0.3, the gain ranges from 9.32% to 53.93%.

Further Discussion. We note that page-based allocation is of even more importance
when the publisher’s inventory of impressions is almost fully sold to advertisers. If
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Fig. 3. Increased gain with reduced inventory, Publisher D

there is a surplus of users (many more than required by the contracts sold in ad-
vance), the deficiencies of a slot-based algorithm are less significant; even if it makes
sub-optimal decisions, leaving several slots empty to satisfy page-level constraints, it
can “make up the difference” with the surplus users. Those ads under-assigned to the
first users can be shown to those arriving later; the surplus of users ensures that there
are enough high-quality impressions for each advertiser. On the other hand, if there
are few users, it is critically important that early opportunities not be wasted, and
page-based algorithms have an even clearer advantage. We demonstrate this by re-
peating the experiments for the 5 publishers above, randomly sampling half the users.
As one can see from Figure 3 for Publisher D, the benefit of page-based allocation is
larger for these reduced-inventory instances than in the original instances. Even the
publisher with least gain (Publisher C) sees its gain go from 3.88% to 5.36% at the con-
straint probability of 0.2. In general, using our algorithm for whole page optimization
produces high single-digit to double-digit percentage gains compared to the slot-based
algorithms, and for supply-constrained publishers, we see gains of another 3-5%.

The experiments above only considered exclusion constraints; these play a particu-
larly significant role in small or niche websites, where many of the advertisers may
compete with each other to target a particular community of users. For many pub-
lishers, all-or-nothing (sometimes referred to as road-blocking) constraints are also
important. It is clear that page-based allocation plays an important role here as well;
if a slot-based algorithm picks an ad with a 5-or-nothing constraint for one slot, it is
compelled to pick the ad 4 more times on the page, regardless of how low a “targeting
quality” or weight the ad may have for those 4 slots. Other kinds of constraints are
also used in practice, but these vary from one publisher to another, and it is harder to
compare these scientifically and publish results of reproducible experiments.
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