4,533 research outputs found

    Anomalous melting behavior of solid hydrogen at high pressures

    Get PDF
    Hydrogen is the most abundant element in the universe, and its properties under conditions of high temperature and pressure are crucial to understand the interior of of large gaseous planets and other astrophysical bodies. At ultra high pressures solid hydrogen has been predicted to transform into a quantum fluid, because of its high zero point motion. Here we report first principles two phase coexistence and Z method determinations of the melting line of solid hydrogen in a pressure range spanning from 30 to 600 GPa. Our results suggest that the melting line of solid hydrogen, as derived from classical molecular dynamics simulations, reaches a minimum of 367 K at about 430 GPa, at higher pressures the melting line of the atomics Cs IV phase regain a positive slope. In view of the possible importance of quantum effects in hydrogen at such low temperatures, we also determined the melting temperature of the atomic CsIV phase at pressures of 400, 500, 600 GPa, employing Feynman path integral simulations. These result in a downward shift of the classical melting line by about 100 K, and hint at a possible secondary maximum in the melting line in the region between 500 and 600 GPa, testifying to the importance of quantum effects in this system. Combined, our results imply that the stability field of the zero temperature quantum liquid phase, if it exists at all, would only occur at higher pressures than previously thought.Comment: Submitted to JC

    Color Behavior Of BL Lacertae Object OJ 287 During Optical Outburst

    Full text link
    This paper aims to study the color behavior of the BL Lac object OJ 287 during optical outburst. According to the revisit of the data from the OJ-94 monitoring project and the analysis the data obtained with the 60/90 cm Schmidt Telescope of NAOC, we found a bluer-when-brighter chromatism in this object. The amplitude of variation tends to decrease with the decrease of frequency. These results are consistent with the shock-in-jet model. We made some simulations and confirmed that both amplitude difference and time delay between variations at different wavelengths can result in the phenomenon of bluer-when-brighter. Our observations confirmed that OJ 287 underwent a double-peaked outburst after about 12 years from 1996, which provides further evidence for the binary black hole model in this object.Comment: 25 pages, 13 figure

    N′-(2-Hy­droxy-4-meth­oxy­benzyl­idene)-4-methyl­benzohydrazide

    Get PDF
    The asymmetric unit of the title compound, C16H16N2O3, contains four independent mol­ecules with different conformations; the dihedral angles between the two benzene rings in the mol­ecules are 39.7 (3), 45.4 (3), 50.6 (3) and 51.6 (3)°. Intramolecular O—H⋯N hydrogen bonds are observed in the molecule. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into two crystallographically independent chains propagating in [010], and each chain is formed by two alternating independent mol­ecules. Weak C—H⋯O inter­actions also occur
    corecore