140 research outputs found
Luminescent Organic–Inorganic Hybrids of Functionalized Mesoporous Silica SBA-15 by Thio-Salicylidene Schiff Base
Novel organic–inorganic mesoporous luminescent hybrid material N, N′-bis(salicylidene)-thiocarbohydrazide (BSTC-SBA-15) has been obtained by co-condensation of tetraethyl orthosilicate and the organosilane in the presence of Pluronic P123 surfactant as a template. N,N′-bis(salicylidene)-thiocarbohydrazide (BSTC) grafted to the coupling agent 3-(triethoxysilyl)-propyl isocyanate (TESPIC) was used as the precursor for the preparation of mesoporous materials. In addition, for comparison, SBA-15 doped with organic ligand BSTC was also synthesized, denoted as BSTC/SBA-15. This organic–inorganic hybrid material was well-characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (HRTEM), and photoluminescence spectra, which reveals that they all have high surface area, uniformity in the mesostructure. The resulting materials (BSTC-SBA-15 and BSTC/SBA-15) exhibit regular uniform microstructures, and no phase separation happened for the organic and the inorganic compounds was covalently linked through Si–O bonds via a self-assemble process. Furthermore, the two materials have different luminescence range: BSTC/SBA-15 presents the strong dominant green luminescence, while BSTC-functionalized material BSTC-SBA-15 shows the dominant blue emission
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Effects and Action Mechanisms of Berberine and Rhizoma coptidis on Gut Microbes and Obesity in High-Fat Diet-Fed C57BL/6J Mice
Gut microbes play important roles in regulating fat storage and metabolism. Rhizoma coptidis (RC) and its main active compound, berberine, have either antimicrobial or anti-obesity activities. In the present study, we hypothesize that RC exerts anti-obesity effects that are likely mediated by mechanisms of regulating gut microbes and berberine may be a key compound of RC. Gut microbes and glucose and lipid metabolism in high-fat diet-fed C57BL/6J (HFD) mice in vivo are investigated after RC and berberine treatments. The results show that RC (200 mg/kg) and berberine (200 mg/kg) significantly lower both body and visceral adipose weights, and reduce blood glucose and lipid levels, and decrease degradation of dietary polysaccharides in HFD mice. Both RC and berberine significantly reduce the proportions of fecal Firmicutes and Bacteroidetes to total bacteria in HFD mice. In the trial ex vivo, both RC and berberine significantly inhibit the growth of gut bacteria under aerobic and anaerobic conditions. In in vitro trials, both RC and berberine significantly inhibit the growth of Lactobacillus (a classical type of Firmicutes) under anaerobic conditions. Furthermore, both RC and berberine significantly increase fasting-induced adipose factor (Fiaf, a key protein negatively regulated by intestinal microbes) expressions in either intestinal or visceral adipose tissues. Both RC and berberine significantly increase mRNA expressions of AMPK, PGC1α, UCP2, CPT1α, and Hadhb related to mitochondrial energy metabolism, which may be driven by increased Fiaf expression. These results firstly suggest that antimicrobial activities of RC and berberine may result in decreasing degradation of dietary polysaccharides, lowering potential calorie intake, and then systemically activating Fiaf protein and related gene expressions of mitochondrial energy metabolism in visceral adipose tissues. Taken together, these action mechanisms may contribute to significant anti-obesity effects. Findings in the present study also indicate that pharmacological regulation on gut microbes can develop an anti-obesity strategy
Defect symmetry influence on electronic transport of zigzag nanoribbons
The electronic transport of zigzag-edged graphene nanoribbon (ZGNR) with local Stone-Wales (SW) defects is systematically investigated by first principles calculations. While both symmetric and asymmetric SW defects give rise to complete electron backscattering region, the well-defined parity of the wave functions in symmetric SW defects configuration is preserved. Its signs are changed for the highest-occupied electronic states, leading to the absence of the first conducting plateau. The wave function of asymmetric SW configuration is very similar to that of the pristine GNR, except for the defective regions. Unexpectedly, calculations predict that the asymmetric SW defects are more favorable to electronic transport than the symmetric defects configuration. These distinct transport behaviors are caused by the different couplings between the conducting subbands influenced by wave function alterations around the charge neutrality point
Search for ψ(3770)→ charmless final states involving η or π0 mesons
We search for ψ(3770) → π+π-η, K+K-η, pp̄η, ρ0π+π-η, K+K-π+π-η, pp̄π+π-η, pp̄K+K-η and pp̄K+K- π0 using data samples of 17.3 and 6.5 pb-1 integrated luminosities recorded at the center-of-mass energies of 3.773 and 3.65 GeV, respectively, by the BES-II detector operating at the BEPC collider. We obtain cross section measurements at both energies and upper limits on ψ(3770) decay branching fractions to the final states studied. © © Springer-Verlag / Società Italiana di Fisica 2010.published_or_final_versionSpringer Open Choice, 21 Feb 201
Experimental studies of e + e -→ some charmless processes containing K S0 at √s = 3.773 and 3.65 GeV
We measure the observed cross sections for the charmless processes e + e -→K S0 K - K - K + π ++ c.c., K S0 K - π + η+c.c., K S0 K - π + π + π - η+c.c., K S0 K - K - K + π + η+c.c., K S0 K - K - K + π + π 0+c.c., K S0 K - ρ ++c.c. and K S0 K - π + ρ 0+c.c. We also extract upper limits on the branching fractions for ψ(3770) decays into these final states at 90% C.L. Analyzed data samples correspond to 17.3 pb-1 and 6.5 pb-1 integrated luminosities registered, respectively, at √s = 3.773 and 3.65 GeV, with the BES-II detector at the BEPC collider. © 2009 Springer-Verlag / Società Italiana di Fisica.published_or_final_versionSpringer Open Choice, 21 Feb 201
Branching fraction measurements of χc0 and χc2 to π0π0 and ηη
Using a sample of 1.06×108 ψ ′ decays collected by the BESIII detector, χc0 and χc2 decays into π0π0 and ηη are studied. The branching fraction results are Br(χc0→π 0π0)=(3.23±0.03±0.23±0.14)×10 -3, Br(χc2→π0π0)=(8.8±0.2±0.6±0.4)×10 -4, Br(χc0→ηη)=(3.44±0.10±0. 24±0.2)×10 -3, and Br(χc2→ηη)=(6. 5±0.4±0.5±0.3)×10 -4, where the uncertainties are statistical, systematic due to this measurement, and systematic due to the branching fractions of ψ ′→ γχcJ. The results provide information on the decay mechanism of χc states into pseudoscalars. © 2010 The American Physical Society.published_or_final_versio
Independent measure of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay
published_or_final_versio
- …