176 research outputs found

    Dynamic profiling of intact glucosinolates in radish by combining UHPLC-HRMS/MS and UHPLC-QqQ-MS/MS

    Get PDF
    Glucosinolates (GSLs) and their degradation products in radish confer plant defense, promote human health, and generate pungent flavor. However, the intact GSLs in radish have not been investigated comprehensively yet. Here, an accurate qualitative and quantitative analyses of 15 intact GSLs from radish, including four major GSLs of glucoraphasatin (GRH), glucoerucin (GER), glucoraphenin (GRE), and 4-methoxyglucobrassicin (4MGBS), were conducted using UHPLC-HRMS/MS in combination with UHPLC-QqQ-MS/MS. Simultaneously, three isomers of hexyl GSL, 3-methylpentyl GSL, and 4-methylpentyl GSL were identified in radish. The highest content of GSLs was up to 232.46 μmol/g DW at the 42 DAG stage in the ‘SQY’ taproot, with an approximately 184.49-fold increase compared to the lowest content in another sample. That the GSLs content in the taproots of two radishes fluctuated in a similar pattern throughout the five vegetative growth stages according to the metabolic profiling, whereas the GSLs content in the ‘55’ leaf steadily decreased over the same period. Additionally, the proposed biosynthetic pathways of radish-specific GSLs were elucidated in this study. Our findings will provide an abundance of qualitative and quantitative data on intact GSLs, as well as a method for detecting GSLs, thus providing direction for the scientific progress and practical utilization of GSLs in radish

    Generation of femtosecond γ-ray bursts stimulated by laser-driven hosing evolution

    Get PDF
    The promising ability of a plasma wiggler based on laser wakefield acceleration to produce betatron X-rays with photon energies of a few keV to hundreds of keV and a peak brilliance of 1022-1023 photons/s/mm2 /mrad2 /0.1%BW has been demonstrated, providing an alternative to large-scale synchrotron light sources. Most methods for generating betatron radiation are based on two typical approaches, one relying on an inherent transverse focusing electrostatic field, which induces transverse oscillation, and the other relying on the electron beam catching up with the rear part of the laser pulse, which results in strong electron resonance. Here, we present a new regime of betatron γ-ray radiation generated by stimulating a large-amplitude transverse oscillation of a continuously injected electron bunch through the hosing of the bubble induced by the carrier envelope phase (CEP) effect of the self-steepened laser pulse. Our method increases the critical photon energy to the MeV level, according to the results of particle-in-cell (PIC) simulations. The highly collimated, energetic and femtosecond γ-ray bursts that are produced in this way may provide an interesting potential means of exploring nuclear physics in table top photo nuclear reactions

    Temporal change in multimorbidity prevalence, clustering patterns, and the association with mortality: findings from the China Kadoorie Biobank study in Jiangsu Province

    Get PDF
    Objectives: The characteristics of multimorbidity in the Chinese population are currently unclear. We aimed to determine the temporal change in multimorbidity prevalence, clustering patterns, and the association of multimorbidity with mortality from all causes and four major chronic diseases. Methods: This study analyzed data from the China Kadoorie Biobank study performed in Wuzhong District, Jiangsu Province. A total of 53,269 participants aged 30–79 years were recruited between 2004 and 2008. New diagnoses of 15 chronic diseases and death events were collected during the mean follow-up of 10.9 years. Yule's Q cluster analysis method was used to determine the clustering patterns of multimorbidity. A Cox proportional hazards model was used to estimate the associations of multimorbidity with mortalities. Results: The overall multimorbidity prevalence rate was 21.1% at baseline and 27.7% at the end of follow-up. Multimorbidity increased more rapidly during the follow-up in individuals who had a higher risk at baseline. Three main multimorbidity patterns were identified: (i) cardiometabolic multimorbidity (diabetes, coronary heart disease, stroke, and hypertension), (ii) respiratory multimorbidity (tuberculosis, asthma, and chronic obstructive pulmonary disease), and (iii) mental, kidney and arthritis multimorbidity (neurasthenia, psychiatric disorders, chronic kidney disease, and rheumatoid arthritis). There were 3,433 deaths during the follow-up. The mortality risk increased by 24% with each additional disease [hazard ratio (HR) = 1.24, 95% confidence interval (CI) = 1.20–1.29]. Compared with those without multimorbidity at baseline, both cardiometabolic multimorbidity and respiratory multimorbidity were associated with increased mortality from all causes and four major chronic diseases. Cardiometabolic multimorbidity was additionally associated with mortality from cardiovascular diseases and diabetes, with HRs of 2.64 (95% CI = 2.19–3.19) and 28.19 (95% CI = 14.85–53.51), respectively. Respiratory multimorbidity was associated with respiratory disease mortality, with an HR of 9.76 (95% CI = 6.22–15.31). Conclusion: The prevalence of multimorbidity has increased substantially over the past decade. This study has revealed that cardiometabolic multimorbidity and respiratory multimorbidity have significantly increased mortality rates. These findings indicate the need to consider high-risk populations and to provide local evidence for intervention strategies and health management in economically developed regions

    Monitoring metabolic responses to chemotherapy in single cells and tumors using nanostructure-initiator mass spectrometry (NIMS) imaging

    Get PDF
    BACKGROUND: Tissue imaging of treatment-induced metabolic changes is useful for optimizing cancer therapies, but commonly used methods require trade-offs between assay sensitivity and spatial resolution. Nanostructure-Initiator Mass Spectrometry imaging (NIMS) permits quantitative co-localization of drugs and treatment response biomarkers in cells and tissues with relatively high resolution. The present feasibility studies use NIMS to monitor phosphorylation of 3(′)-deoxy-3(′)-fluorothymidine (FLT) to FLT-MP in lymphoma cells and solid tumors as an indicator of drug exposure and pharmacodynamic responses. METHODS: NIMS analytical sensitivity and spatial resolution were examined in cultured Burkitt’s lymphoma cells treated briefly with Rapamycin or FLT. Sample aliquots were dispersed on NIMS surfaces for single cell imaging and metabolic profiling, or extracted in parallel for LC-MS/MS analysis. Docetaxel-induced changes in FLT metabolism were also monitored in tissues and tissue extracts from mice bearing drug-sensitive tumor xenografts. To correct for variations in FLT disposition, the ratio of FLT-MP to FLT was used as a measure of TK1 thymidine kinase activity in NIMS images. TK1 and tumor-specific luciferase were measured in adjacent tissue sections using immuno-fluorescence microscopy. RESULTS: NIMS and LC-MS/MS yielded consistent results. FLT, FLT-MP, and Rapamycin were readily detected at the single cell level using NIMS. Rapid changes in endogenous metabolism were detected in drug-treated cells, and rapid accumulation of FLT-MP was seen in most, but not all imaged cells. FLT-MP accumulation in xenograft tumors was shown to be sensitive to Docetaxel treatment, and TK1 immunoreactivity co-localized with tumor-specific antigens in xenograft tumors, supporting a role for xenograft-derived TK1 activity in tumor FLT metabolism. CONCLUSIONS: NIMS is suitable for monitoring drug exposure and metabolite biotransformation with essentially single cell resolution, and provides new spatial and functional dimensions to studies of cancer metabolism without the need for radiotracers or tissue extraction. These findings should prove useful for in vitro and pre-clinical studies of cancer metabolism, and aid the optimization of metabolism-based cancer therapies and diagnostics

    Association of healthy lifestyle with incident cardiovascular diseases among hypertensive and normotensive Chinese adults

    Get PDF
    Background: Whether lifestyle improvement benefits in reducing cardiovascular diseases (CVD) events extend to hypertensive patients and whether these benefits differ between hypertensive and normotensive individuals is unclear. This study aimed to investigate the associations of an overall healthy lifestyle with the subsequent development of CVD among participants with hypertension and normotension. Methods: Using data from the Suzhou subcohort of the China Kadoorie Biobank study of 51,929 participants, this study defined five healthy lifestyle factors as nonsmoking or quitting for reasons other than illness; nonexcessive alcohol intake; relatively higher physical activity level; a relatively healthy diet; and having a standard waist circumference and body mass index. We estimated the associations of these lifestyle factors with CVD, ischemic heart disease (IHD) and ischemic stroke (IS). Results: During a follow-up of 10.1 years, this study documented 6,151 CVD incidence events, 1,304 IHD incidence events, and 2,243 IS incidence events. Compared to those with 0–1 healthy lifestyle factors, HRs for those with 4–5 healthy factors were 0.71 (95% CI: 0.62, 0.81) for CVD, 0.56 (95% CI: 0.42, 0.75) for IHD, and 0.63 (95% CI: 0.51, 0.79) for IS among hypertensive participants. However, we did not observe this association among normotensive participants. Stratified analyses showed that the association between a healthy lifestyle and IHD risk was stronger among younger participants, and the association with IS risk was stronger among hypertensive individuals with lower household incomes. Conclusion: Adherence to a healthy lifestyle pattern is associated with a lower risk of cardiovascular diseases among hypertensive patients, but this benefit is not as pronounced among normotensive patients

    Association between physical activity and cancer risk among Chinese adults: a 10-year prospective study

    Get PDF
    Background: In China, the quantity of physical activity differs from that in Western countries. Substantial uncertainty remains about the relevance of physical activity for cancer subtypes among Chinese adults. Objective: This study aimed to investigate the association between total daily physical activity and the incidence of common types of cancer. Methods: A total of 53,269 participants aged 30–79 years were derived from the Wuzhong subcohort of the China Kadoorie Biobank study during 2004–2008. We included 52,938 cancer-free participants in the final analysis. Incident cancers were identified through linkage with the health insurance system and death registries. Cox proportional hazard models were introduced to assess the associations of total daily physical activity with the incidence of 6 common types of cancer. Results: During a follow-up of 10.1 years, 3,674 cases of cancer were identified, including 794 (21.6%) from stomach cancer, 722 (19.7%) from lung cancer, 458 (12.5%) from colorectal cancer, 338 (9.2%) from liver cancer, 250 (6.8%) from breast cancer, and 231 (6.3%) from oesophageal cancer. Compared to the participants in the lowest quartile of physical activity levels, those in the highest quartile had an 11% lower risk for total cancer incidence (hazard ratio [HR]: 0.89, 95% confidence interval [CI]: 0.81–0.99), 25% lower risk for lung cancer incidence (HR: 0.75, 95% CI: 0.60–0.94), and 26% lower risk for colorectal cancer incidence (HR: 0.74, 95% CI: 0.55–1.00). There were significant interactions of physical activity with sex and smoking on total cancer (both P for interaction  Conclusions: Higher physical activity levels are associated with a reduced risk of total, lung, and colorectal cancer

    Long-term ambient air pollution exposure and cardio-respiratory disease in China: findings from a prospective cohort study

    Get PDF
    Background Existing evidence on long-term ambient air pollution (AAP) exposure and risk of cardio-respiratory diseases in China is mainly on mortality, and based on area average concentrations from fixed-site monitors for individual exposures. Substantial uncertainty persists, therefore, about the shape and strength of the relationship when assessed using more personalised individual exposure data. We aimed to examine the relationships between AAP exposure and risk of cardio-respiratory diseases using predicted local levels of AAP. Methods A prospective study included 50,407 participants aged 30–79 years from Suzhou, China, with concentrations of nitrogen dioxide (NO2), sulphur dioxide (SO2), fine (PM2.5), and inhalable (PM10) particulate matter, ozone (O3) and carbon monoxide (CO) and incident cases of cardiovascular disease (CVD) (n = 2,563) and respiratory disease (n = 1,764) recorded during 2013–2015. Cox regression models with time-dependent covariates were used to estimate adjusted hazard ratios (HRs) for diseases associated with local-level concentrations of AAP exposure, estimated using Bayesian spatio–temporal modelling. Results The study period of 2013–2015 included a total of 135,199 person-years of follow-up for CVD. There was a positive association of AAP, particularly SO2 and O3, with risk of major cardiovascular and respiratory diseases. Each 10 µg/m3 increase in SO2 was associated with adjusted hazard ratios (HRs) of 1.07 (95% CI: 1.02, 1.12) for CVD, 1.25 (1.08, 1.44) for COPD and 1.12 (1.02, 1.23) for pneumonia. Similarly, each 10 µg/m3 increase in O3 was associated with adjusted HR of 1.02 (1.01, 1.03) for CVD, 1.03 (1.02, 1.05) for all stroke, and 1.04 (1.02, 1.06) for pneumonia. Conclusions Among adults in urban China, long-term exposure to ambient air pollution is associated with a higher risk of cardio-respiratory disease

    Associations of erythrocyte polyunsaturated fatty acids with incidence of stroke and stroke types in adult Chinese: a prospective study of over 8000 individuals

    Get PDF
    Purpose There is limited and inconsistent evidence about the relationships of erythrocyte polyunsaturated fatty acids (PUFAs) with stroke and stroke types, particularly in China where the stroke rates are high. We aimed to investigate the associations of different erythrocyte PUFAs with incidence of total stroke, ischemic stroke (IS), and intracerebral hemorrhage (ICH) in Chinese adults. Methods In the prospective China Kadoorie Biobank, erythrocyte PUFAs were measured using gas chromatography in 10,563 participants who attended 2013–14 resurvey. After a mean follow-up of 3.8 years, 412 incident stroke cases (342 IS, 53 ICH) were recorded among 8,159 participants without prior vascular diseases or diabetes. Cox regression yielded adjusted hazard ratios (HRs) for stroke associated with 13 PUFAs. Results Overall, the mean body mass index was 24.0 (3.4) kg/m2 and the mean age was 58.1 (9.9) years. In multivariable analyses, 18:2n–6 was positively associated with ICH (HR = 2.33 [95% CIs 1.41, 3.82] for top versus bottom quintile, Ptrend = 0.007), but inversely associated with IS (0.69 [0.53,0.90], Ptrend = 0.027), while 20:3n-6 was positively associated with risk of IS (1.64 [1.32,2.04], Ptrend nonlinear = 0.002) and total stroke (Pnonlinear = 0.008), with a threshold at 0.70%. After further adjustment for conventional CVD risk factors and dietary factors, these associations remained similar. Conclusion Among relatively lean Chinese adults, erythrocyte PUFAs 18:2n–6, 20:3n–6 and 20:5n–3 showed different associations with risks of IS and ICH. These results would improve the understanding of stroke etiology

    Heterogeneity in the diagnosis and prognosis of ischemic stroke subtypes: 9-year follow-up of 22,000 cases in Chinese adults

    Get PDF
    Background: Reliable classification of ischemic stroke (IS) etiological subtypes is required in research and clinical practice, but the predictive properties of these subtypes in population studies with incomplete investigations are poorly understood. Aims: To compare the prognosis of etiologically classified IS subtypes and use machine learning (ML) to classify incompletely investigated IS cases. Methods: In a 9-year follow-up of a prospective study of 512,726 Chinese adults, 22,216 incident IS cases, confirmed by clinical adjudication of medical records, were assigned subtypes using a modified Causative Classification System for Ischemic Stroke (CCS) (large artery atherosclerosis (LAA), small artery occlusion (SAO), cardioaortic embolism (CE), or undetermined etiology) and classified by CCS as “evident,” “probable,” or “possible” IS cases. For incompletely investigated IS cases where CCS yielded an undetermined etiology, an ML model was developed to predict IS subtypes from baseline risk factors and screening for cardioaortic sources of embolism. The 5-year risks of subsequent stroke and all-cause mortality (measured using cumulative incidence functions and 1 minus Kaplan–Meier estimates, respectively) for the ML-predicted IS subtypes were compared with etiologically classified IS subtypes. Results: Among 7443 IS subtypes with evident or probable etiology, 66% had SAO, 32% had LAA, and 2% had CE, but proportions of SAO-to-LAA cases varied by regions in China. CE had the highest rates of subsequent stroke and mortality (43.5% and 40.7%), followed by LAA (43.2% and 17.4%) and SAO (38.1% and 11.1%), respectively. ML provided classifications for cases with undetermined etiology and incomplete clinical data (24% of all IS cases; n = 5276), with area under the curves (AUC) of 0.99 (0.99–1.00) for CE, 0.67 (0.64–0.70) for LAA, and 0.70 (0.67–0.73) for SAO for unseen cases. ML-predicted IS subtypes yielded comparable subsequent stroke and all-cause mortality rates to the etiologically classified IS subtypes. Conclusion: This study highlighted substantial heterogeneity in prognosis of IS subtypes and utility of ML approaches for classification of IS cases with incomplete clinical investigations
    corecore