155 research outputs found

    Magnetic Skyrmion Transport in a Nanotrack With Spatially Varying Damping and Non-adiabatic Torque

    Full text link
    Reliable transport of magnetic skyrmions is required for any future skyrmion-based information processing devices. Here we present a micromagnetic study of the in-plane current-driven motion of a skyrmion in a ferromagnetic nanotrack with spatially sinusoidally varying Gilbert damping and/or non-adiabatic spin-transfer torque coefficients. It is found that the skyrmion moves in a sinusoidal pattern as a result of the spatially varying Gilbert damping and/or non-adiabatic spin-transfer torque in the nanotrack, which could prevent the destruction of the skyrmion caused by the skyrmion Hall effect. The results provide a guide for designing and developing the skyrmion transport channel in skyrmion-based spintronic applications.Comment: 5 pages, 6 figure

    Current-Induced Dynamics and Chaos of Antiferromagnetic Bimerons

    Full text link
    A magnetic bimeron is a topologically non-trivial spin texture carrying an integer topological charge, which can be regarded as the counterpart of skyrmion in easy-plane magnets. The controllable creation and manipulation of bimerons are crucial for practical applications based on topological spin textures. Here, we analytically and numerically study the dynamics of an antiferromagnetic bimeron driven by a spin current. Numerical simulations demonstrate that the spin current can create an isolated bimeron in the antiferromagnetic thin film via the damping-like spin torque. The spin current can also effectively drive the antiferromagnetic bimeron without a transverse drift. The steady motion of an antiferromagnetic bimeron is analytically derived and is in good agreement with the simulation results. Also, we find that the alternating-current-induced motion of the antiferromagnetic bimeron can be described by the Duffing equation due to the presence of the nonlinear boundary-induced force. The associated chaotic behavior of the bimeron is analyzed in terms of the Lyapunov exponents. Our results demonstrate the inertial dynamics of an antiferromagnetic bimeron, and may provide useful guidelines for building future bimeron-based spintronic devices.Comment: 6 pages, 4 figure

    Electric field-induced creation and directional motion of domain walls and skyrmion bubbles

    Full text link
    Magnetization dynamics driven by an electric field could provide long-term benefits to information technologies because of its ultralow power consumption. Meanwhile, the Dzyaloshinskii-Moriya interaction in interfacially asymmetric multilayers consisting of ferromagnetic and heavy-metal layers can stabilize topological spin textures, such as chiral domain walls, skyrmions, and skyrmion bubbles. These topological spin textures can be controlled by an electric field, and hold promise for building advanced spintronic devices. Here, we present an experimental and numerical study on the electric field-induced creation and directional motion of topological spin textures in magnetic multilayer films and racetracks with thickness gradient and interfacial Dzyaloshinskii-Moriya interaction at room temperature. We find that the electric field-induced directional motion of chiral domain wall is accompanied with the creation of skyrmion bubbles at certain conditions. We also demonstrate that the electric field variation can induce motion of skyrmion bubbles. Our findings may provide opportunities for developing skyrmion-based devices with ultralow power consumption.Comment: 26 pages, 6 figure

    Current-driven skyrmionium in a frustrated magnetic system

    Full text link
    Magnetic skyrmionium can be used as a nanometer-scale non-volatile information carrier, which shows no skyrmion Hall effect due to its special structure carrying zero topological charge. Here, we report the static and dynamic properties of an isolated nanoscale skyrmionium in a frustrated magnetic monolayer, where the skyrmionium is stabilized by competing interactions. The frustrated skyrmionium has a size of about 1010 nm, which can be further reduced by tuning perpendicular magnetic anisotropy or magnetic field. It is found that the nanoscale skyrmionium driven by the damping-like spin-orbit torque shows directional motion with a favored Bloch-type helicity. A small driving current or magnetic field can lead to the transformation of an unstable N\'eel-type skyrmionium to a metastable Bloch-type skyrmionium. A large driving current may result in the distortion and collapse of the Bloch-type skyrmionium. Our results are useful for the understanding of frustrated skyrmionium physics, which also provide guidelines for the design of spintronic devices based on topological spin textures.Comment: 5 pages, 5 figure
    • …
    corecore