470 research outputs found

    NeuralMarker: A Framework for Learning General Marker Correspondence

    Full text link
    We tackle the problem of estimating correspondences from a general marker, such as a movie poster, to an image that captures such a marker. Conventionally, this problem is addressed by fitting a homography model based on sparse feature matching. However, they are only able to handle plane-like markers and the sparse features do not sufficiently utilize appearance information. In this paper, we propose a novel framework NeuralMarker, training a neural network estimating dense marker correspondences under various challenging conditions, such as marker deformation, harsh lighting, etc. Besides, we also propose a novel marker correspondence evaluation method circumstancing annotations on real marker-image pairs and create a new benchmark. We show that NeuralMarker significantly outperforms previous methods and enables new interesting applications, including Augmented Reality (AR) and video editing.Comment: Accepted by ToG (SIGGRAPH Asia 2022). Project Page: https://drinkingcoder.github.io/publication/neuralmarker

    Clusterin confers gmcitabine resistance in pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To measure clusterin expression in pancreatic cancer tissues and cell lines and to evaluate whether clusterin confers resistance to gmcitabine in pancreatic cancer cells.</p> <p>Methods</p> <p>Immunohistochemistry for clusterin was performed on 50 primary pancreatic cancer tissues and 25 matched backgrounds, and clusterin expression in 5 pancreatic cancer cell lines was quantified by Western blot and PT-PCR. The correlation between clusterin expression level and gmcitabine IC50 in pancreatic cancer cell lines was evaluated. The effect of an antisense oligonucleotide (ASO) against clusterin(OGX-011) on gmcitabine resistance was evaluated by MTT assays. Xenograft model was used to demonstrate tumor growth.</p> <p>Results</p> <p>Pancreatic cancer tissues expressed significantly higher levels of clusterin than did normal pancreatic tissues (<it>P </it>< 0.01). Clusterin expression levels were correlated with gmcitabine resistance in pancreatic cancer cell lines, and OGX-011 significantly decreased BxPc-3 cells resistance to gmcitabine (<it>P </it>< 0.01). <it>In vivo </it>systemic administration of AS clusterin and gmcitabine significantly decreased the s.c. BxPC-3 tumor volume compared with mismatch control ODN plus gmcitabine.</p> <p>Conclusion</p> <p>Our finding that clusterin expression was significantly higher in pancreatic cancer than in normal pancreatic tissues suggests that clusterin may confer gmcitabine resistance in pancreatic cancer cells.</p

    Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries

    Get PDF
    Polysulfide dissolution and slow electrochemical kinetics of conversion reactions lead to low utilization of sulfur cathodes that inhibits further development of room-temperature sodium-sulfur batteries. Here we report a multifunctional sulfur host, NiS2 nanocrystals implanted in nitrogen-doped porous carbon nanotubes, which is rationally designed to achieve high polysulfide immobilization and conversion. Attributable to the synergetic effect of physical confinement and chemical bonding, the high electronic conductivity of the matrix, closed porous structure, and polarized additives of the multifunctional sulfur host effectively immobilize polysulfides. Significantly, the electrocatalytic behaviors of the Lewis base matrix and the NiS2 component are clearly evidenced by operando synchrotron X-ray diffraction and density functional theory with strong adsorption of polysulfides and high conversion of soluble polysulfides into insoluble Na2S2/Na2S. Thus, the as-obtained sulfur cathodes exhibit excellent performance in room-temperature Na/S batteries
    corecore