6,088 research outputs found
Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity
We construct holographic superconductors from Einstein-Maxwell-dilaton
gravity in 3+1 dimensions with two adjustable couplings and the charge
carried by the scalar field. For the values of and we
consider, there is always a critical temperature at which a second order phase
transition occurs between a hairy black hole and the AdS RN black hole in the
canonical ensemble, which can be identified with the superconducting phase
transition of the dual field theory. We calculate the electric conductivity of
the dual superconductor and find that for the values of and where
is small the dual superconductor has similar properties to the
minimal model, while for the values of and where is
large enough, the electric conductivity of the dual superconductor exhibits
novel properties at low frequencies where it shows a "Drude Peak" in the real
part of the conductivity.Comment: 25 pages, 13 figures; v2, typos corrected; v3, refs added, to appear
in JHE
Photoluminescence and lasing characteristics of single nonpolar GaN microwires
published_or_final_versio
Erratum to: Binding Energy and Spin-Orbit Splitting of a Hydrogenic Donor Impurity in AlGaN/GaN Triangle-Shaped Potential Quantum Well
In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energyEband spin-orbit split energy Г of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Г decreases drastically. (4) The maximum of Г is 1.22 meV when the electric field of heterointerface is 1 MV/cm
Integrated transcriptional profiling and genomic analyses reveal RPN2 and HMGB1 as promising biomarkers in colorectal cancer
Colorectal cancer (CRC) is a heterogeneous disease that is associated with a gradual accumulation of genetic and epigenetic alterations. Among all CRC stages, stage II tumors are highly heterogeneous with a high relapse rate in about 20-25 % of stage II CRC patients following surgery. Thus, a comprehensive analysis of gene signatures to identify aggressive and metastatic phenotypes in stage II CRC is desired for a more accurate disease classification and outcome prediction. By utilizing a Cancer Array, containing 440 oncogenes and tumor suppressors to profile mRNA expression, we identified a larger number of differentially expressed genes in poorly differentiated stage II colorectal adenocarcinoma tissues, compared to their matched normal tissues. Ontology and Ingenuity Pathway Analysis (IPA) indicated that these genes are involved in functional mechanisms associated with several transcription factors. Genomic alterations of these genes were also investigated through The Cancer Genome Atlas (TCGA) database, utilizing 195 published CRC specimens. The percentage of genomic alterations in these genes was ranked based on their mRNA expression, copy number variations and mutations. This data was further combined with published microarray studies from a large set of CRC tumors classified based on prognostic features. This led to the identification of eight candidate genes including RPN2, HMGB1, AARS, IGFBP3, STAT1, HYOU1, NQO1 and PEA15 that were associated with the progressive phenotype. In particular, RPN2 and HMGB1 displayed a higher genomic alteration frequency in CRC, compared to eight other major solid cancers. Immunohistochemistry was performed on additional 78 stage I-IV CRC samples, where RPN2 protein immunostaining exhibited a significant association with stage III/IV tumors, distant metastasis, and poor differentiation, indicating that RPN2 expression is associated with poor prognosis. Further, our study revealed significant transcriptional regulatory mechanisms, networks and gene signatures, underlying CRC malignant progression and phenotype warranting future clinical investigations.published_or_final_versio
Shear-strain-mediated magnetoelectric effects revealed by imaging.
Large changes in the magnetization of ferromagnetic films can be electrically driven by non-180° ferroelectric domain switching in underlying substrates, but the shear components of the strains that mediate these magnetoelectric effects have not been considered so far. Here we reveal the presence of these shear strains in a polycrystalline film of Ni on a 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 substrate in the pseudo-cubic (011)pc orientation. Although vibrating sample magnetometry records giant magnetoelectric effects that are consistent with the hitherto expected 90° rotations of a global magnetic easy axis, high-resolution vector maps of magnetization (constructed from photoemission electron microscopy data, with contrast from X-ray magnetic circular dichroism) reveal that the local magnetization typically rotates through smaller angles of 62-84°. This shortfall with respect to 90° is a consequence of the shear strain associated with ferroelectric domain switching. The non-orthogonality represents both a challenge and an opportunity for the development and miniaturization of magnetoelectric devices.Isaac Newton Trust, the Royal Society, University of Wisconsin Madison, Agència de Gestió d'Ajuts Universitaris i de Recercaa - Generalitat de Cataluny
Mapping Patent Classifications: Portfolio and Statistical Analysis, and the Comparison of Strengths and Weaknesses
The Cooperative Patent Classifications (CPC) jointly developed by the
European and US Patent Offices provide a new basis for mapping and portfolio
analysis. This update provides an occasion for rethinking the parameter
choices. The new maps are significantly different from previous ones, although
this may not always be obvious on visual inspection. Since these maps are
statistical constructs based on index terms, their quality--as different from
utility--can only be controlled discursively. We provide nested maps online and
a routine for portfolio overlays and further statistical analysis. We add a new
tool for "difference maps" which is illustrated by comparing the portfolios of
patents granted to Novartis and MSD in 2016.Comment: Scientometrics 112(3) (2017) 1573-1591;
http://link.springer.com/article/10.1007/s11192-017-2449-
Spatially homogeneous Lifshitz black holes in five dimensional higher derivative gravity
We consider spatially homogeneous Lifshitz black hole solutions in five
dimensional higher derivative gravity theories, which can be possible near
horizon geometries of some systems that are interesting in the framework of
gauge/gravity duality. We show the solutions belonging to the nine Bianchi
classes in the pure R^2 gravity. We find that these black holes have zero
entropy at non-zero temperatures and this property is the same as the case of
BTZ black holes in new massive gravity at the critical point. In the most
general quadratic curvature gravity theories, we find new solutions in Bianchi
Type I and Type IX cases.Comment: 15 pages, no figure; v2, refs added, version to appear in JHE
The Hydration Structure at Yttria-Stabilized Cubic Zirconia (110)-Water Interface with Sub-Angstrom Resolution
The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas the second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. The multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.ope
Thermodynamics of deformed AdS model with a positive/negative quadratic correction in graviton-dilaton system
By solving the Einstein equations of the graviton coupling with a real scalar
dilaton field, we establish a general framework to self-consistently solve the
geometric background with black-hole for any given phenomenological holographic
models. In this framwork, we solve the black-hole background, the corresponding
dilaon field and the dilaton potential for the deformed AdS model with a
positive/negative quadratic correction. We systematically investigate the
thermodynamical properties of the deformed AdS model with a positive and
negative quadratic correction, respectively, and compare with lattice QCD on
the results of the equation of state, the heavy quark potential, the Polyakov
loop and the spatial Wilson loop. We find that the bulk thermodynamical
properties are not sensitive to the sign of the quadratic correction, and the
results of both deformed holographic QCD models agree well with lattice QCD
result for pure SU(3) gauge theory. However, the results from loop operators
favor a positive quadratic correction, which agree well with lattice QCD
result. Especially, the result from the Polyakov loop excludes the model with a
negative quadratic correction in the warp factor of .Comment: 26 figures,36 pages,V.3: an appendix,more equations and references
added,figures corrected,published versio
- …