970 research outputs found

    Annealing effects on superconductivity in SrFe2-xNixAs2

    Full text link
    Superconductivity has been explored in single crystals of the Ni-doped FeAs-compound SrFe2-xNixAs2 grown by self-flux solution method. The antiferromagnetic order associated with the magnetostructural transition of the parent compound SrFe2As2 is gradually suppressed with increasing Ni concentration x and bulk-phase superconductivity with full diamagnetic screening is induced near the optimal doping of x = 0.15 with a maximum transition temperature Tc ~9.8 K. An investigation of high-temperature annealing on as-grown samples indicate that the heat treatment can enhance Tc as much as ~50 %

    A robust braille recognition system

    Get PDF
    Braille is the most effective means of written communication between visually-impaired and sighted people. This paper describes a new system that recognizes Braille characters in scanned Braille document pages. Unlike most other approaches, an inexpensive flatbed scanner is used and the system requires minimal interaction with the user. A unique feature of this system is the use of context at different levels (from the pre-processing of the image through to the post-processing of the recognition results) to enhance robustness and, consequently, recognition results. Braille dots composing characters are identified on both single and double-sided documents of average quality with over 99% accuracy, while Braille characters are also correctly recognised in over 99% of documents of average quality (in both single and double-sided documents)

    Magnetic Field Measurement with Ground State Alignment

    Full text link
    Observational studies of magnetic fields are crucial. We introduce a process "ground state alignment" as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1GB10151{\rm G}\gtrsim B\gtrsim 10^{-15}G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this article, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.Comment: 30 pages, 12 figures, chapter in Lecture Notes in Physics "Magnetic Fields in Diffuse Media". arXiv admin note: substantial text overlap with arXiv:1203.557

    Bi2Fe4O9 thin films as novel visible-light-active photoanodes for solar water splitting

    Get PDF
    We report the chemical solution deposition (CSD) of a phase-pure Bi2Fe4O9 thin film for use as a photoanode in photoelectrochemical (PEC) water splitting. The energy levels of Bi2Fe4O9 films have been measured and n-type characteristics have been confirmed. With band gaps determined as 2.05 eV (indirect) and 2.80 eV (direct) and valence and conduction bands straddling the water oxidation and reduction potentials, this material is highly promising as a photocatalyst for solar water splitting. The photocurrent of a planar photoanode reached 0.1 mA cm−2 at 1.23 VNHE under AM1.5G illumination. The addition of H2O2 as a hole scavenger increased the photocurrent to 0.25 mA cm−2, indicating hole injection is one limiting factor to the performance. The performance was enhanced by nearly 5-fold when the Bi2Fe4O9 photoanode is coupled to a Co–Pi surface co-catalyst. The photoanode also shows excellent stability with no change in photocurrent over three hours of continuous illumination. These results indicate that this material represents a promising addition to the growing selection of low-cost, stable photocatalysts for use in solar water splitting

    Momentum Regularity and Stability of the Relativistic Vlasov-Maxwell-Boltzmann System

    Full text link
    In the study of solutions to the relativistic Boltzmann equation, their regularity with respect to the momentum variables has been an outstanding question, even local in time, due to the initially unexpected growth in the post-collisional momentum variables which was discovered in 1991 by Glassey & Strauss \cite{MR1105532}. We establish momentum regularity within energy spaces via a new splitting technique and interplay between the Glassey-Strauss frame and the center of mass frame of the relativistic collision operator. In a periodic box, these new momentum regularity estimates lead to a proof of global existence of classical solutions to the two-species relativistic Vlasov-Boltzmann-Maxwell system for charged particles near Maxwellian with hard ball interaction.Comment: 23 pages; made revisions which were suggested by the referee; to appear in Comm. Math. Phy

    Measurement of the Zero Crossing in a Feshbach Resonance of Fermionic 6-Li

    Full text link
    We measure a zero crossing in the scattering length of a mixture of the two lowest hyperfine states of 6-Li. To locate the zero crossing, we monitor the decrease in temperature and atom number arising from evaporation in a CO2 laser trap as a function of magnetic field B. The temperature decrease and atom loss are minimized for B=528(4) G, consistent with no evaporation. We also present preliminary calculations using potentials that have been constrained by the measured zero crossing and locate a broad Feshbach resonance at approximately 860 G, in agreement with previous theoretical predictions. In addition, our theoretical model predicts a second and much narrower Feshbach resonance near 550 G.Comment: Five pages, four figure

    Prospective, randomized, double‐blind assessment of topical bakuchiol and retinol for facial photoageing

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147746/1/bjd16918_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147746/2/bjd16918.pd

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    Spin echo small angle neutron scattering using a continuously pumped He-3 neutron polarisation analyser

    Get PDF
    We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of 3He. We describe the performance of the analyser along with a study of the 3He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments
    corecore