26 research outputs found

    Research on blank optimization design based on low-carbon and low-cost blank process route optimization model

    Get PDF
    The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production

    Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016

    Get PDF

    Assessing 62 Chinese Fir (Cunninghamia lanceolata) Breeding Parents in a 12-Year Grafted Clone Test

    No full text
    Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is one of the major commercial conifer species in China. The present study concentrated on the assessment of growth, wood property traits, and strobili number in a 12-year grafted clone test of 62 Chinese fir breeding parents, aiming to describe the variation and correlations between these traits and to identify parent clones with the highest potential for future breeding. The results indicate that all of the growth (height, diameter at breast height, stem volume, crown-width) and wood property (wood basic density and hygroscopicity) traits varied significantly (p < 0.01) among clones, with coefficients of variation ranging from 7.6% to 30.6%. Furthermore, these traits consistently had a moderate to high (0.39–0.87) repeatability estimate (broad-sense heritability). Remarkable clonal differences were also observed for the production of male and female strobili. Phenotypic correlations among growth traits were strong (p < 0.01) and positive. Significantly negative correlations (p < 0.01 or 0.05) were found between wood basic density and growth (except for height) and hygroscopicity. The production of male and female strobili appeared to be significantly (p < 0.01) positively correlated with each other. A notable number of faster-growing parent clones were identified (n = 30); 11 of these had higher density wood with an average realized gain of 10.5% in diameter, and a 5.4% gain in wood basic density. When selection was made for growth and strobili, 10 faster-growing parent clones with medium to high production of female strobili were identified

    Association of SRAP markers with juvenile wood basic density and growth traits in Cunninghamia lanceolata (Lamb.) Hook

    No full text
    Application of sequence-related amplified polymorphism (SRAP) markers to unravel variations and relationships with biological and morphological traits has been reported in a variety of plant species, and their potential for breeding has also been highlighted. (1) Assess the diversity level of a Cunninghamia lanceolata (Chinese fir) genetic panel based on phenotypic traits and SRAP markers, (2) identify SRAP loci linked to juvenile wood basic density (JWBD) and growth traits, and (3) address the overlap of the trait-associated SRAP markers during the juvenile and mature stages of this species. A total of 227 Chinese fir genotypes were subjected to phenotype, SRAP genotyping, and marker-trait association analyses. A total of 564 unambiguous SRAP bands and 558 polymorphic loci were identified from the genotypes. The overall percentage of polymorphic bands, polymorphism information content, Nei’s gene diversity, and Shannon’s Information Index were 98.9%, 0.2576, 0.3196 and 0.4838, respectively. An analysis of molecular variance further demonstrated that the genotypes varied significantly at SRAP polymorphisms (p < 0.01). A wide genetic distance span from 0.0531 to 0.9097 was also observed; most (94.9%) fell within the range of 0.3000–0.6999. An association analysis based on general linear model (GLM) and mixed linear model (MLM) unraveled 21, 26, 25, and 19 marker-trait associations for JWBD, height (H), diameter at breast height (DBH, 1.3 m) and stem volume (V), respectively. These marker-trait associations corresponded to 64 different SRAP markers; 46 of these were linked to only one trait, while the other 18 markers appeared to be associated with more than one trait but limited to growth traits. Overall, the SRAP markers represented R2 (percentage of the phenotypic variation explained by marker) values of 1.7–9.2% for the GLM and 1.7–5.6% for the MLM. Strikingly, the significant trait-associated marker list seemed to be rather different from that of the previous study performed on mature traits (WBD, H, DBH and V), except for overlap of two markers. This study demonstrated an association of SRAP markers with JWBD and growth traits in Chinese fir. The results further our understanding of the genetic basis of the Chinese fir WBD and growth traits at the juvenile stage

    Characterization of Aerobic Denitrifying Bacterium <em>Pseudomonas mendocina</em> Strain GL6 and Its Potential Application in Wastewater Treatment Plant Effluent

    No full text
    To remove nitrate in wastewater treatment plant effluent, an aerobic denitrifier was newly isolated from the surface flow constructed wetland and identified as Pseudomonas mendocina strain GL6. It exhibited efficient aerobic denitrification ability, with the nitrate removal rate of 6.61 mg (N)·L−1·h−1. Sequence amplification indicated that the denitrification genes napA, nirK, norB, and nosZ were present in strain GL6. Nitrogen balance analysis revealed that approximately 74.5% of the initial nitrogen was removed as gas products. In addition, the response surface methodology experiments showed that the maximum removal of total nitrogen occurred at pH 7.76, C/N ratio of 11.2, temperature of 27.8 °C, and with shaking at 133 rpm. Furthermore, under the optimized cultivation condition, strain GL6 was added into wastewater treatment plant effluent and the removal rates of nitrate nitrogen and total nitrogen reached 95.6% and 73.6%, respectively. Thus, P. mendocina strain GL6 has high denitrification potential for deep improvement of effluent quality

    A germline-specific role for the mTORC2 component Rictor in maintaining spermatogonial differentiation and intercellular adhesion in mouse testis

    No full text
    Study Question: What is the physiological role of Rictor in spermatogenic cells? Summary Answer: Germline expression of Rictor regulates spermatogonial differentiation and has an essential role in coordinating germ cells and Sertoli cells in maintaining intact cell–cell adhesion dynamics and cytoskeleton-based architecture in the seminiferous epithelium. What is Known Already: The mechanistic target of rapamycin (mTOR) resides in its functions as the catalytic subunits of the structurally and functionally distinct mTORC1 and mTORC2 complexes. In the mammalian testis, mTORC1 regulates spermatogonial stem cell self-renewal and differentiation, whereas mTORC2 is required for Sertoli cell function. In contrast to mTORC1, mTORC2 has been much less well studied. Rictor is a distinct component of the mTORC2 complex. Study Design, Size, Duration: We investigated the effects of germ cell-specific ablation of Rictor on testicular development by using a mouse model of germline-specific ablation of Rictor. Participants/Materials, Setting, Methods: We analyzed the in-vivo functions of Rictor through different methods including histology, immunofluorescent staining, chromosome spreads, blood–testis barrier (BTB) integrity assays and RNA sequencing. Main Results and the Role of Chance: Mutant mice did not show a defect in meiotic synapsis or recombination, but exhibited compromised spermatogonial differentiation potential, disorganized cell–cell junctions, impaired BTB dynamics and defective spermiogenesis. Concomitantly, RNA-seq profiling revealed that many genes involved in adhesion and migration were expressed inappropriately. Large Scale Data: RNA-seq data are published in the SRA database (PRJNA419273). Limitations, Reasons for Caution: A detailed analysis of the mechanisms underlying the phenotype needs further investigations. Wider Implications of the Findings: Our work provides previously unidentified in-vivo evidence that germline expression of Rictor plays a role in maintaining spermatogonial differentiation and cell–cell adhesion. These findings are important for understanding the regulation of spermatogenesis and have clinical implications for the effect of mTOR inhibitors on human fertility

    Further Mining and Characterization of miRNA Resource in Chinese Fir (Cunninghamia lanceolata)

    No full text
    In this study, we aimed to expand the current miRNA data bank of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) regarding its potential value for further genetic and genomic use in this species. High-throughput small RNA sequencing successfully captured 140 miRNAs from a Chinese fir selfing family harboring vigor and depressed progeny. Strikingly, 75.7% (n = 106) of these miRNAs have not been documented previously, and most (n = 105) of them belong to the novel set with 6858 putative target genes. The new datasets were then integrated with the previous information to gain insight into miRNA genetic architecture in Chinese fir. Collectively, a relatively high proportion (62%, n = 110) of novel miRNAs were found. Furthermore, we identified one MIR536 family that has not been previously documented in this species and four overlapped miRNA families (MIR159, MIR164, MIR171_1, and MIR396) from new datasets. Regarding the stability, we calculated the secondary structure free energy and found a relatively low R2 value (R2 &lt; 0.22) between low minimal folding free energy (MFE) of pre-miRNAs and MFE of its corresponding mature miRNAs in most datasets. When in view of the conservation aspect, the phylogenetic trees showed that MIR536 and MIR159 sequences were highly conserved in gymnosperms
    corecore