19 research outputs found

    Mineral Geochemistry of Basaltic Rocks from IODP Expeditions 334 and 344: Implications for Magmatic Processes of Cocos Ridge Segment Being Subducted Beneath the Middle America Trench

    No full text
    The Cocos Ridge, which is subducted beneath the Central American Volcanic Arc, has a complex tectonic evolution history due to plume-ridge interaction between the Galápagos plume and the Cocos—Nazca spreading center. This study presents major and trace element analyses of plagioclase and clinopyroxenes hosted by Cocos Ridge basaltic rocks that were drilled in three holes (U1381A, U1381C and U1414A) of Sites U1381 and U1414 on the Cocos Ridge close to the Middle America Trench during the Integrated Ocean Drilling Program (IODP) Expeditions 334 and 344. The results show that (1) plagioclases are mainly bytownite and labradorite with subordinate andesine, which are enriched in light rare earth elements (LREE) and some large-ion lithophile elements (LILE) and exhibit marked positive Eu anomalies; and (2) that clinopyroxenes are augites, which are depleted in highly incompatible elements such as LREE and LILE, have nearly flat heavy rare earth elements patterns (HREE) and lack Eu anomalies in chondrite-normalized rare earth element (REE) diagrams. During the ascent to the surface, the primary magmas experienced fractional crystallization of plagioclase, clinopyroxene, Ti-Fe oxides and possibly olivine (complete replacement of olivine by secondary minerals). The crystallization temperatures of plagioclase phenocrysts and microlites are 1050 to 1269 °C, and 866 to 1038 °C, respectively, and the pressures of plagioclase phenocrysts are 0.3–0.7 GPa. The crystallization temperatures of clinopyroxene phenocrysts/micro-phenocrysts is 1174–1268 °C, similar to those of plagioclase phenocrysts, suggesting some of clinopyroxene and plagioclase phenocrysts cotectic crystallized during early stage of magmatic evolution. In addition, the equilibrium pressures of clinopyroxene phenocrysts/micro phenocrysts are 0.02–0.97 GPa, implying that the clinopyroxene started to crystallize within the mantle, and magma evolution has undergone an early crystallization stage with clinopyroxene and no plagioclase

    U-Pb isotope geochronology and geochemistry of granites from Hainan Island (northern South China Sea margin): Constraints on late Paleozoic-Mesozoic tectonic evolution

    No full text
    Hainan Island is a key component of the South China Sea region and provides insights on regional geological evolution since the Paleozoic. Ten newLA-ICPMS zircon U-Pb ages from granites of Hainan Island include Late Permian (254±3Ma; 252±3 Ma), Middle-Late Triassic (243±2Ma; 242±3Ma; 240±2Ma; 228±2 Ma) and late Early to early Late Cretaceous (105±1Ma; 101±1Ma; 96±2Ma; 95±3 Ma) ages. All samples in the present study, including late Permian, Middle-Late Triassic, and late Early to early Late Cretaceous granitic rocks show geochemical characteristics similar to those of calc-alkaline to high-K calc-alkaline I-type granites. Major and trace element geochemical variations show that during petrogenesis, these granites experienced fractional crystallization of minerals (e.g., Ti oxides and apatite). Compared to the late Permian and Middle-Late Triassic granitic rocks, middle to late Cretaceous granites generally have lower initial ⁸⁷Sr/⁸⁶Sr ratios of 0.70594 to 0.70886, lower TDM2 ages of 1314 to 1382 Ma, and higher εNd(t) of -4.94 to -5.96, implying that the magmatic source for Cretaceous granites received more significant contribution from juvenile material relative to that for Permo-Triassic granites. These new data, combined with data from literature for Hainan Island and the South China Sea (SCS) region underpin a conceptual model for late Paleozoic to Mesozoic tectonic evolution for Hainan Island and the general SCS region as follows, (a) Late Permian (272-252 Ma), the initiation and development of continental arc related to the subduction of Palaeo-Tethys ocean; (b) Triassic (249-228 Ma), continued arc magmatism, the gradual cessation of Palaeo-Tethys subduction and subsequent development of an extensional setting; (c) Early Jurassic to early Cretaceous (190-130Ma), the development of an Andean-type continental arc, and regional tectonic regime switch to the westward subduction of the Palaeo-Pacific plate; (d) Middle to late Cretaceous (128-70Ma), the continuation of the Andean-type arc, the development of an extensional setting due to slab rollback, and the cessation (~70 Ma) of Palaeo-Pacific plate subduction

    Implications of the melting depth and temperature of the Atlantic mid-ocean ridge basalts

    No full text
    Mid-ocean ridge basalts (MORBs) are characterized by large variations in trace element compositions and isotopic ratios, which are difficult to be interpreted solely by using magmatic process such as partial melting of a peridotitic mantle and subsequently fractional crystallization. Geochemical diversity of MORBs have been attributed to large-scale heterogeneity within the underlying mantle, and the heterogeneity might have been caused by addition of recycled crustal component, subcontinental lithosphere, metasomatized lithosphere and outer core contribution. In this study, we investigated the MORBs along the Mid-Atlantic Ridge (MAR) by estimating the temperature and pressure of partial melting, and comprehensively comparing trace element and isotope ratios. The data for MORBs from areas close to mantle plumes show large variations. Mantle plumes can affect mid-oceanic ridges 1 400 km away, but plume effects did not cover all of the ridge segments, and those segments without plume effects did not have any abnormalities in temperature, trace element or isotope ratios. We ascribed the above phenomena to result from the shapes of the plume flow, which we categorized as "pipelike channels" and "pancake-like channels". The "pancake-like channels" plumes affected the ambient mantle nondirectionally, but the range of the mantle affected by the "pipe-like channels" plumes were selective. Element ratios of MORBs reveal that the mantle source of the MORBs along the MAR is highly heterogeneous. We suggest that most of source heterogeneities of the MORBs may be due to the presence of subducted slab and delaminated lower crust in the source. In addition, the plume that carried materials from the core-mantle boundary may affect some of the segments

    Early Cretaceous granitic rocks from the southern Jiaodong Peninsula, eastern China: implications for lithospheric extension

    No full text
    Zircon U-Pb ages, major element and trace element compositions, and Sr, Nd, and Pb isotopic compositions for late Mesozoic granites from the southern Jiaodong Peninsula (eastern China) were determined. Ages for the Wulianshan, Xiaozhushan, and Dazhushan plutons are 119.1-122.3, 114.2, and 108.9 Ma, respectively. Major and trace element characteristics show that these granitic rocks belong to alkaline, A-type granites formed in an extensional setting. Trace element compositions show strong, variable negative anomalies in Ba, K, P and Ti, and positive anomalies in Rb, Th, U, Pb, Ce, Zr, and Hf, which are typical characteristics of A-type granites. Variable Sr and Nd isotopic compositions, 87Sr/86Sr(i) = 0.70540-0.7071 and εNd(t) = -14.5 to -20.9. Whole-rock Pb isotopic compositions have the following ranges, (206Pb/204Pb)t = 15.707-16.561, (207Pb/204Pb)t = 15.376-16.462, and (208Pb/204Pb)t = 36.324 to 37.064. Isotopic modelling indicates an origin that lies between mantle tapped by Cenozoic basalts around the Tan-Lu megafault and lower continental crust (LCC), and which can be explained by mixing of 11-18% mantle and 82-89% LCC. Based on new and compiled data, we suggest that the southern Jiaodong Peninsula, as well as the Laoshan area, was in a regional extensional setting of an orogenic belt during 106-126 Ma. The granitic rocks may be the result of late Mesozoic lithospheric thinning and decratonization (i.e. late Mesozoic craton destruction event occurring throughout eastern China)

    Geochemistry of axial lavas from the mid-and southern Mariana Trough, and implications for back-arc magmatic processes

    No full text
    The Mariana Trough, a relatively simple intra-oceanic back-arc basin, is ideal for investigating magmatic processes and mantle- crust interaction in a subduction setting. We present new major- and trace element compositions for 31 basaltic lava and glass samples from the Mariana Trough back-arc spreading center. The studied lavas include phenocrysts of plagioclase, olivine and pyroxene. Major element compositions show that these lavas range from tholeiitic basalt to basaltic andesite, and belong to a sub- alkali tholeiitic series produced by fluid-influenced fractional crystallization of primary basaltic melts. Trace element composi- tions show that these lavas are transitional between typical normal mid-ocean ridge basalts (MORB) and island arc basalt (IAB), and are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs). Trace element ratios, e.g., Ba/Th, Pb/Ce, Th/Nd, La/Sm, Th/Nb, Ba/Nb and Th/Nb, indicate that the mantle from which these lavas were derived underwent modification resulting from the addition of multiple subduction components. Some typical trace element ratios (e.g., Ba/Nb- total subduction component, Ba/Th- shallow subduction, and Th/Nb-deep subduction component) from our new data and the literature suggest that a latitudinal variation exists in addition to subduction components, and indicates a more complex and heterogeneous distribution of subduction components in the Mariana back-arc region. We suggest that, (1) compared to back-arc locations at 18° N and 15.5° N, lavas from back-arc locations at 17° N indicate higher levels of modification by hydrous fluid released from the subducted slab, and (2) compared to back-arc locations at 17° N and 15.5° N, petrogenesis of lavas from back-arc locations at 18° N indicates a greater influence of sediment melt

    Evaluating the effect of leaching on trace element and Nd-Pb isotopic systematics in continental basalts

    No full text
    Leaching technique was mostly carried out on submarine rock powder to minimize or eliminate secondary effect of seawater interaction on Sr and Pb isotope magmatic signatures. However, the effect of leaching on trace element contents is comparatively poorly established. To investigate such effects, we have compared trace element and Nd-Pb isotopic data for acid leached ∼290 Ma Keping basalts in the Tarim Large Igneous Province (NW China) with unleached data on the same rocks. Rare earth elements (REE), Y, Th and U contents of leached sample grains (0.6–1.0 mm size) are 10–65% lower than those of unleached grains of the same sample, whereas other trace elements are not affected. Sm/Nd, Lu/Hf, U/Pb and Th/Pb ratios are fractionated by acid leaching between leached and unleached sample grains. Nd isotope values are unaffected by leaching, but 208Pb/204Pb and 206Pb/204Pb values of leached samples are significantly lower than those of unleached samples. X-ray diffraction results suggest that removal of secondary epidote during the acid leaching process could result in the fractionation of REE, Y, Th and U contents, and Sm/Nd, Lu/Hf, U/Pb and Th/Pb ratios, and 208Pb/204Pb and 206Pb/204Pb values. These results suggest that when the samples have been leached with strong acid (>1N HCl), their trace element cannot be used to trace the sources and petrogenesis. If leaching is applied to old (e.g., >100 Ma) continental basalts in order to eliminate contamination during sample collection, storage, sawing and crushing, Th/Pb and U/Pb ratios used to calculate the initial Pb isotope values, should be obtained on the same leached samples. Keywords: Tarim Large Igneous Province, Trace element, Nd-Pb isotopes, Alteration, Acid leachin

    Early Cretaceous granitic rocks from the southern Jiaodong Peninsula, eastern China: implications for lithospheric extension

    No full text
    <p>Zircon U–Pb ages, major element and trace element compositions, and Sr, Nd, and Pb isotopic compositions for late Mesozoic granites from the southern Jiaodong Peninsula (eastern China) were determined. Ages for the Wulianshan, Xiaozhushan, and Dazhushan plutons are 119.1–122.3, 114.2, and 108.9 Ma, respectively. Major and trace element characteristics show that these granitic rocks belong to alkaline, A-type granites formed in an extensional setting. Trace element compositions show strong, variable negative anomalies in Ba, K, P and Ti, and positive anomalies in Rb, Th, U, Pb, Ce, Zr, and Hf, which are typical characteristics of A-type granites. Variable Sr and Nd isotopic compositions, <sup>87</sup>Sr/<sup>86</sup>Sr(i) = 0.70540–0.7071 and <i>ε</i>Nd(<i>t</i>) = −14.5 to −20.9. Whole-rock Pb isotopic compositions have the following ranges, (<sup>206</sup>Pb/<sup>204</sup>Pb)<i>t</i> = 15.707–16.561, (<sup>207</sup>Pb/<sup>204</sup>Pb)<i>t</i> = 15.376–16.462, and (<sup>208</sup>Pb/<sup>204</sup>Pb)<i>t</i> = 36.324 to 37.064. Isotopic modelling indicates an origin that lies between mantle tapped by Cenozoic basalts around the Tan-Lu megafault and lower continental crust (LCC), and which can be explained by mixing of 11–18% mantle and 82–89% LCC. Based on new and compiled data, we suggest that the southern Jiaodong Peninsula, as well as the Laoshan area, was in a regional extensional setting of an orogenic belt during 106–126 Ma. The granitic rocks may be the result of late Mesozoic lithospheric thinning and decratonization (i.e. late Mesozoic craton destruction event occurring throughout eastern China).</p

    Mafic-hosted seafloor sulfide mineralization at the margin of a non-transform discontinuity on the southern mid-Atlantic ridge

    No full text
    <p>Mineralogical, geochemical and S-isotopic studies were carried out on seafloor massive sulfides (SMS) and hydrothermally altered rocks from the mafic-hosted TaiJi field (including TaiJi-1 and TaiJi-2 sites), which is located on the margin of a nontransform discontinuity (NTD) on the Southern Mid-Atlantic Ridge (SMAR). The main hydrothermal precipitates of TaiJi-1 were massive sulfides, while TaiJi-2 produced a large amount of semi-massive sulfides. Significant rock alteration is an important feature of this field, and large amounts of clay minerals (chlorite) occurred in the semi-massive sulfides. Geochemically, notable negative correlations were identified between rock forming elements (Mg) and major hydrothermal metal elements such as Zn + Cu and Co in semisulfides. Such mineralogical and geochemical characteristics, together with low Co/Ni ratio (similar to the surrounding rocks) of the semi-massive sulfides and the unique REE features of some altered rocks, tell us that the prominent mineralization mechanism for these semi-massive sulfides was probably related to rock mineralization. Thus, TaiJi-2 appears to differ significantly from the TaiJi-1 in terms of sulfide mineralization mechanism. Moreover, the TaiJi sulfides are remarkable for large δ<sup>34</sup>S variation (7.2–15.3%). We suggest that seawater corrosion after sulfides precipitation were responsible for <sup>34</sup>S enrichment in sulfides. Furthermore, our work sheds some light on the comparison between TaiJi and other NTD-related fields along the Mid-Atlantic Ridge. We argue that rock mineralization may represent an important mineralization type in NTDs.</p
    corecore