103 research outputs found

    The relationship between red blood cell distribution width and metabolic syndrome in elderly Chinese: a cross-sectional study

    Get PDF
    © 2019 The Author(s). Objective: Metabolic syndrome (MS) is a group of risk factors which includes hypertension, hyperglycemia, abnormal cholesterol levels, and obesity. Red blood cell distribution width (RDW) is a parameter that reflects the heterogeneity of erythrocyte volume. But the relationship between MS and RDW is intricate and remains poorly understood. We hypothesized that high RDW was associated with MS via inflammation. Our study aimed to investigate the association between RDW and MS in Chinese elderly large cohort. If RDW had a strong correlation with MS, RDW could become a predictor of MS? Methods: We recruited 10,887 ostensibly healthy participants aged from 60 to 93 (5795 male, 5092 female). Associations between RDW and other variables were assessed by Pearson correlation. Crude and adjusted odds ratio for MS with 95% confidence intervals was calculated by binary logistic regression models. Results: In elderly Chinese, RDW was significantly higher in males than in females. The prevalence of both men and women decreased with the rise of RDW. For both sexes, RDW demonstrated positive correlations with age, systolic blood pressure (0.070 in males,0.058 in females), high density lipoprotein(0.027in males,0.064 in females), negative correlations with triglycerides (- 0.120 in males,-0.074 in females) and fasting glucose (- 0.048 in males,-0.016 in females). Notably, we detected the associated reduced risks at the the third and fourth quartile of RDW in males. In women, there was no statistical significance. Conclusion: We found the adjusted odds ratios of MS was lower at the third and fourth quartile of RDW in males

    Unveiling microstructural damage for leakage current degradation in SiC Schottky diode after heavy ions irradiation under 200 V

    Full text link
    Single-event burnout and single-event leakage current (SELC) in SiC power devices induced by heavy ions severely limit their space application, and the underlying mechanism is still unclear. One fundamental problem is lack of high-resolution characterization of radiation damage in the irradiated SiC power devices, which is a crucial indicator of the related mechanism. In this letter, high-resolution transmission electron microscopy (TEM) was used to characterize the radiation damage in the 1437.6 MeV 181Ta-irradiated SiC junction barrier Schottky diode under 200 V. The amorphous radiation damage with about 52 nm in diameter and 121 nm in length at the Schottky metal (Ti)-semiconductor (SiC) interface was observed. More importantly, in the damage site the atomic mixing of Ti, Si, and C was identified by electron energy loss spectroscopy and high-angle annular dark-field scanning TEM. It indicates that the melting of the Ti-SiC interface induced by localized Joule heating is responsible for the amorphization and the formation of titanium silicide, titanium carbide, or ternary phases. These modifications at nanoscale in turn cause the localized degradation of the Schottky contact into Ohmic contact, resulting in the permanent increase in leakage current. This experimental study provides some valuable clues to thorough understanding of the SELC mechanism in SiC diode.Comment: 4 pages,4 figure

    Net Phosphorus Requirements of Dorper×Thin-tailed Han Crossbred Ram Lambs

    Get PDF
    A comparative slaughter trial was conducted to estimate the phosphorus (P) requirement for maintenance and growth of crossbred lambs of Dorper with a Chinese indigenous sheep breed, thin-tailed Han sheep. Thirty-five Dorper×thin-tailed Han crossbred, noncastrated ram lambs (20.3±0.22 kg of shrunk body weight (SBW)) were used. Seven lambs were randomly chosen and slaughtered at 20 kg SBW as the baseline group for measuring initial body composition. Another seven lambs were also randomly chosen and offered a pelleted mixed diet for ad libitum intake and slaughtered at 28 kg SBW. The remaining 21 sheep were randomly divided into 3 groups with 7 sheep each and subject to the same diet of either 70 or 40% of ad libitum intake. The 3 groups were slaughtered when the sheep fed ad libitum reached 35 kg of SBW. Body P contents were determined after slaughter. The results showed that the net P requirement for maintenance was 30.0 mg/kg of empty body weight (EBW) or 23.4 mg/kg body weight (BW), and the P requirement for growth decreased from 5.3 to 5.0 g/kg of EBW gain as the lamb grew from 20 to 35 kg. The net P requirement for growth of Dorper×thin-tailed Han crossbred ram lambs was lower than that of sheep adopted by the American nutritional system

    Molecular characterization of florfenicol and oxazolidinone resistance in Enterococcus isolates from animals in China

    Get PDF
    Florfenicol is widely used for the treatment of bacterial infections in domestic animals. The aim of this study was to analyze the molecular mechanisms of florfenicol and oxazolidinone resistance in Enterococcus isolates from anal feces of domestic animals. The minimum inhibitory concentration (MIC) levels were determined by the agar dilution method. Polymerase chain reaction (PCR) was performed to analyze the distribution of the resistance genes. Whole-genome sequencing and comparative plasmid analysis was conducted to analyze the resistance gene environment. A total of 351 non-duplicated enteric strains were obtained. Among these isolates, 22 Enterococcus isolates, including 19 Enterococcus. faecium and 3 Enterococcus. faecalis, were further studied. 31 florfenicol resistance genes (13 fexA, 3 fexB, 12 optrA, and 3 poxtA genes) were identified in 15 of the 19 E. faecium isolates, and no florfenicol or oxazolidinone resistance genes were identified in 3 E. faecalis isolates. Whole-genome sequencing of E. faecium P47, which had all four florfenicol and oxazolidinone resistance genes and high MIC levels for both florfenicol (256 mg/L) and linezolid (8 mg/L), revealed that it contained a chromosome and 3 plasmids (pP47-27, pP47-61, and pP47-180). The four florfenicol and oxazolidinone resistance genes were all related to the insertion sequences IS1216 and located on two smaller plasmids. The genes fexB and poxtA encoded in pP47-27, while fexA and optrA encoded in the conjugative plasmid pP47-61. Comparative analysis of homologous plasmids revealed that the sequences with high identities were plasmid sequences from various Enterococcus species except for the Tn6349 sequence from a Staphylococcus aureus chromosome (MH746818.1). The current study revealed that florfenicol and oxazolidinone resistance genes (fexA, fexB, poxtA, and optrA) were widely distributed in Enterococcus isolates from animal in China. The mobile genetic elements, including the insertion sequences and conjugative plasmid, played an important role in the horizontal transfer of florfenicol and oxazolidinone resistance

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Establishment of young ruminants rearing system and its key scientific issues

    No full text
    corecore