47 research outputs found

    The dynamics of thrombin generation

    Get PDF

    Semi-automated thrombin dynamics applying the ST Genesia thrombin generation assay

    Get PDF
    BackgroundThe haemostatic balance is an equilibrium of pro- and anticoagulant factors that work synergistically to prevent bleeding and thrombosis. As thrombin is the central enzyme in the coagulation pathway, it is desirable to measure thrombin generation (TG) in order to detect possible bleeding or thrombotic phenotypes, as well as to investigate the capacity of drugs affecting the formation of thrombin. By investigating the underlying processes of TG (i.e., prothrombin conversion and inactivation), additional information is collected about the dynamics of thrombin formation.ObjectivesTo obtain reference values for thrombin dynamics (TD) analysis in 112 healthy donors using an automated system for TG.MethodsTG was measured on the ST Genesia, fibrinogen on the Start, anti-thrombin (AT) on the STA R Max and α2Macroglobulin (α2M) with an in-house chromogenic assay.ResultsTG was measured using STG-BleedScreen, STG-ThromboScreen and STG-DrugScreen. The TG data was used as an input for TD analysis, in combination with plasma levels of AT, α2M and fibrinogen that were 113% (108–118%), 2.6 μM (2.2 μM−3.1 μM) and 2.9 g/L (2.6–3.2 g/L), respectively. The maximum rate of the prothrombinase complex (PCmax) and the total amount of prothrombin converted (PCtot) increased with increasing tissue factor (TF) concentration. PCtot increased from 902 to 988 nM, whereas PCmax increased from 172 to 508 nM/min. Thrombin (T)-AT and T-α2M complexes also increased with increasing TF concentration (i.e., from 860 to 955 nM and from 28 to 33 nm, respectively). PCtot, T-AT and T-α2M complex formation were strongly inhibited by addition of thrombomodulin (−44%, −43%, and −48%, respectively), whereas PCmax was affected less (−24%). PCtot, PCmax, T-AT, and T-α2M were higher in women using oral contraceptives (OC) compared to men/women without OC, and inhibition by thrombomodulin was also significantly less in women on OC (p < 0.05).ConclusionsTG measured on the ST Genesia can be used as an input for TD analysis. The data obtained can be used as reference values for future clinical studies as the balance between prothrombin conversion and thrombin inactivation has shown to be useful in several clinical settings

    Biofilms as self-shaping growing nematics

    Full text link
    Active nematics are the nonequilibrium analog of passive liquid crystals in which anisotropic units consume free energy to drive emergent behavior. Similar to liquid crystal (LC) molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions; however, unlike passive liquid crystals, active nematics, such as those composed of living matter, have the potential to regulate their boundaries through self-generated stresses. Here, using bacterial biofilms confined by a hydrogel as a model system, we show how a three-dimensional, living nematic can actively shape itself and its boundary in order to regulate its internal architecture through growth-induced stresses. We show that biofilms exhibit a sharp transition in shape from domes to lenses upon changing environmental stiffness or cell-substrate friction, which is explained by a theoretical model considering the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary defines the orientational ordering of cells and the emergence of topological defects in the interior of the biofilm. Our findings reveal novel self-organization phenomena in confined active matter and provide strategies for guiding the development of programmed microbial consortia with emergent material properties

    Spatial accessibility of emergency medical services in Chongqing, Southwest China

    Get PDF
    BackgroundTimely access to emergency medical services (EMS) can significantly reduce mortality. In China, the evidence of the accessibility of complete EMS which considers two related trips and involves large rural areas is insufficient. This study aimed to explore the accessibility of ambulance services and complete EMS in Chongqing and its regional differences, and to provide a reference for improving spatial accessibility of EMS in Chongqing and optimizing allocation of EMS resources.MethodsThe nearest neighbor method was used to measure spatial accessibility of ambulance services and complete EMS. Spatial aggregation patterns and influencing factors of spatial accessibility of complete EMS were analyzed using Moran's I index, Pearson correlation and multiple linear regression.ResultsThe medians of shortest travel time for ambulance, monitoring ambulance, primary EMS and advanced EMS in Chongqing were 7.0, 18.6, 36.2, and 47.8 min. The shortest travel time for complete EMS showed significant spatial aggregation characteristics. The Low-Low types that referred to cluster of short EMS travel time mainly distributed in city proper. The High-High types that referred to cluster of long EMS travel time mainly distributed in northeast and southeast of Chongqing. Urbanization rate was a negative influencing factor on shortest travel time for primary EMS, while average elevation and the number of settlements were positive influencing factors. GDP per capita and urbanization rate were negative influencing factors on shortest travel time for advanced EMS, while the number of settlements was a positive influencing factor.ConclusionThis study evaluated the accessibility of EMS which considers two related trips in Chongqing. Although the accessibility of ambulances in Chongqing was relatively high, the accessibility of monitoring ambulance was relatively low. Regional and urban-rural differences in the accessibility of complete EMS integrating two related trips were obvious. It was recommended to increase financial investment in economic backward areas, increase high-quality EMS resources, enhance EMS capacity of central township health centers, strengthen road construction in mountainous areas, and provide reasonable planning of rural settlements for improving the spatial accessibility of EMS, narrowing the urban-rural gap and improving equity in getting EMS for all the people

    Deciphering the coagulation profile through the dynamics of thrombin activity

    Get PDF
    Thrombosis has proven to be extremely difficult to predict. Measuring the generation of thrombin is a very sensitive method to detect changes in the hemostatic system. We developed a method based on the generation of thrombin to further fingerprint hemostasis, which we have named thrombin dynamics. Via this method we are able to exactly measure the prothrombin conversion and thrombin inactivation, and any change in the coagulation cascade will be reflected in these two processes. In the current study we analyzed the importance of the members of the pr

    Cell transcriptomic atlas of the non-human primate Macaca fascicularis.

    Get PDF
    Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.We thank W. Liu and L. Xu from the Huazhen Laboratory Animal Breeding Centre for helping in the collection of monkey tissues, D. Zhu and H. Li from the Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) for technical help, G. Guo and H. Sun from Zhejiang University for providing HCL and MCA gene expression data matrices, G. Dong and C. Liu from BGI Research, and X. Zhang, P. Li and C. Qi from the Guangzhou Institutes of Biomedicine and Health for experimental advice or providing reagents. This work was supported by the Shenzhen Basic Research Project for Excellent Young Scholars (RCYX20200714114644191), Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), Shenzhen Bay Laboratory (SZBL2019062801012) and Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011). In addition, L.L. was supported by the National Natural Science Foundation of China (31900466), Y. Hou was supported by the Natural Science Foundation of Guangdong Province (2018A030313379) and M.A.E. was supported by a Changbai Mountain Scholar award (419020201252), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), a Chinese Academy of Sciences–Japan Society for the Promotion of Science joint research project (GJHZ2093), the National Natural Science Foundation of China (92068106, U20A2015) and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075). M.L. was supported by the National Key Research and Development Program of China (2021YFC2600200).S

    Green synthesis of carbon quantum dots from plant turmeric holds promise as novel photosensitizer for in vitro photodynamic antimicrobial activity

    No full text
    Research has shown that carbon quantum dots (CQDs) are active as novel carbon nanomaterials in photodynamic therapy due to their excellent photophysical properties. However, previously expensive precursors and time-consuming production processes, as well as complex doping/functionalization forms have limited their economic design and use. In this study, we prepared ST-JHCQDs by a simple and green method using natural plant turmeric as the carbon source, and characterized ST-JHCQDs by physical and optical means. In vitro antibacterial results showed that the antibacterial effects of ST-JHCQDs against E. coli and S. aureus under the irradiation of blue light depended on carbonization degrees, concentration and light duration. Biomolecule leakage and confocal laser scanning microscope analysis showed that ST-JHCQDs were effective in producing reactive oxygen species (ROS) under blue light irradiation, which resulted in disturbance of cell membrane integrity and leakage of intracellular macromolecules in both bacteria. Meanwhile, scanning electron microscopy images showed cell membrane wrinkling and fragmentation, which was consistent with ROS damage, demonstrating the effectiveness of ST-JHCQDs as photosensitizers in vitro photodynamic antimicrobial activity. These experiments show that CQDs prepared from turmeric was a new natural photosensitizer material with great antibacterial potential

    Reference values for thrombin dynamics in platelet rich plasma

    No full text
    Thrombin generation (TG) is a better determinant of the overall function of the hemostatic system than routinely used clotting time-based assays and can be studied more in detail by thrombin dynamics analysis. Platelet poor plasma is often used to measure TG, however, measuring the contribution of the platelets is also important as patients with a low platelet count or with dysfunctional platelets have an increased risk of developing bleeding. In this study, platelet rich plasma (PRP) was collected from 117 healthy individuals. PRP was measured undiluted and diluted to a varying platelet concentration of 10*109/L to 400*109/L. Prothrombin conversion and thrombin inactivation were calculated from the data obtained by the TG parameters and coagulation factor levels (antithrombin, α2Macroglobulin (α2M) and fibrinogen). Reference ranges of TG and thrombin dynamics in PRP of 117 healthy individuals were established. Peak, velocity index and the maximum rate of prothrombin conversion increased linearly with platelet count, but endogenous thrombin potential reached a maximum at 150*109/L as seen in a subset population (n = 20). More extensive analysis revealed that a platelet count below 50*109/L did not affect TG parameters (except for the ETP). Correlation analysis indicated that the platelet count mainly affected the rate of prothrombin conversion. Inhibition of thrombin by antithrombin and α2M increased with increasing TG, but the ratio of inhibition by antithrombin or α2M remained the same independently of the total thrombin formed. In conclusion, TG and thrombin dynamics were assessed in PRP of healthy donors to provide reference values for future TG studies in PRP. Increasing the platelet count mainly affected the rate of prothrombin conversion and TG, rather than the total amount of thrombin formed

    A promising cathode material of sodium iron–nickel hexacyanoferrate for sodium ion batteries

    No full text
    Sodium ion batteries are attracting great attention due to the naturally alternative energy storage for large-scale applications. The reliable and high performance cathode materials are urgently needed for their practical applications. Here, we report sodium iron–nickel hexacyanoferrate (FeNiHCF) with Prussian blue structure by substitution of a portion of iron ions with nickel ions, and characterize it as cathode material of sodium ion battery for the first time. The low-spin Fe2+/Fe3+ couple in FeNiHCF is sufficiently activated for sodium storage, which leads to higher capacity contribution at larger potential and better stability on redox energy comparing with the single metal hexacyanoferrate of FeHCF or NiHCF. The FeNiHCF cathode presents synergistic advantages of high capacity, remarkable cycling stability, superior rate capability and good Coulombic efficiency. Significant improvement on electrochemical performance have been achieved with a discharge capacity of 106 mAh g−1, a Coulombic efficiency of ∼97% and excellent capacity retention of 96% over 100 cycles. Impressively, the FeNiHCF cathode present a good and stable cycling at high current densities, e.g. a capacity of 71 mAh g−1 and 100% capacity retention at a current density as high as 500 mA g−1. The intercalation chemistry manner for improving the sodium storage of material may shed light on improving the Na-storage performance of Prussian blue analogues
    corecore