70 research outputs found

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations

    Guidance on noncorticosteroid systemic immunomodulatory therapy in noninfectious uveitis: fundamentals of care for uveitis (focus) initiative

    Get PDF
    Topic: An international, expert-led consensus initiative to develop systematic, evidence-based recommendations for the treatment of noninfectious uveitis in the era of biologics. Clinical Relevance: The availability of biologic agents for the treatment of human eye disease has altered practice patterns for the management of noninfectious uveitis. Current guidelines are insufficient to assure optimal use of noncorticosteroid systemic immunomodulatory agents. Methods: An international expert steering committee comprising 9 uveitis specialists (including both ophthalmologists and rheumatologists) identified clinical questions and, together with 6 bibliographic fellows trained in uveitis, conducted a Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol systematic reviewof the literature (English language studies from January 1996 through June 2016; Medline [OVID], the Central Cochrane library, EMBASE,CINAHL,SCOPUS,BIOSIS, andWeb of Science). Publications included randomized controlled trials, prospective and retrospective studies with sufficient follow-up, case series with 15 cases or more, peer-reviewed articles, and hand-searched conference abstracts from key conferences. The proposed statements were circulated among 130 international uveitis experts for review.Atotal of 44 globally representativegroupmembersmet in late 2016 to refine these guidelines using a modified Delphi technique and assigned Oxford levels of evidence. Results: In total, 10 questions were addressed resulting in 21 evidence-based guidance statements covering the following topics: when to start noncorticosteroid immunomodulatory therapy, including both biologic and nonbiologic agents; what data to collect before treatment; when to modify or withdraw treatment; how to select agents based on individual efficacy and safety profiles; and evidence in specific uveitic conditions. Shared decision-making, communication among providers and safety monitoring also were addressed as part of the recommendations. Pharmacoeconomic considerations were not addressed. Conclusions: Consensus guidelines were developed based on published literature, expert opinion, and practical experience to bridge the gap between clinical needs and medical evidence to support the treatment of patients with noninfectious uveitis with noncorticosteroid immunomodulatory agents

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms. © 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved

    110th Anniversary: The Missing Link Unearthed: Materials and Process Intensification

    No full text
    For many years, process intensification has been seen and considered through the prism of equipment and methods. The current review paper adds a new perspective to it and examines the role of (advanced) materials in process intensification. The discussion is illustrated with numerous examples of various types of materials that have been shown to intensify chemical and catalytic reactions, mass transfer, heat transfer, and momentum transfer processes, respectively. The role of process intensification in manufacturing of new, advanced materials is also discussed. In view of the importance of materials for process intensification, an update of the classical approach to the field of PI is postulated.Intensified Reaction and Separation System

    Magnonic Domain Wall Heat Conductance in Ferromagnetic Wires

    No full text
    We present a theoretical study of magnon-mediated heat transport in electrically insulating ferromagnetic wires containing a domain wall (DW). In the regime of validity of continuum micromagnetism, a DW is found to have no effect on the heat conductance. However, spin waves are found to be reflected by DWs with widths of a few lattice spacings, which is associated with emergence of an additional spin wave bound state. The resulting DW heat conductance should be significant for thin films of yttrium iron garnet with sharply defined magnetic domains.Quantum NanoscienceApplied Science

    Coherent elastic excitation of spin waves

    No full text
    We model the injection of elastic waves into a ferromagnetic film (F) by a nonmagnetic transducer (N). We compare the configurations in which the magnetization is normal and parallel to the wave propagation. The lack of axial symmetry in the former results in the emergence of evanescent interface states. We compute the energy-flux transmission across the N|F interface and sound-induced magnetization dynamics in the ferromagnet. We predict efficient acoustically induced pumping of spin current into a metal contact attached to F.QN/Quantum NanoscienceApplied Science

    Angular and linear momentum of excited ferromagnets

    No full text
    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist in the presence of dipole-dipole interactions. However, spin and orbital angular momentum are no longer conserved separately. We also define the linear momentum of ferromagnetic textures. We illustrate the general principles with special reference to spin transfer torques and identify the emergence of a nonadiabatic effective field acting on domain walls in ferromagnetic insulators.QN/Quantum NanoscienceApplied Science

    Laboratory evaluation of the effects of long-term aging on high content polymer modified asphalt binder

    No full text
    One of the most widely used polymer-based modifiers in asphalt binders is styrene–butadiene–styrene (SBS), which results in binders of increased modulus, strength, toughness, and resistance to permanent deformation. These properties are further improved with the increase of SBS polymer content in asphalt binders, producing binders such as high-content polymer-modified asphalt (HCPMA). Although the HCPMA binders commonly are used in porous asphalt pavements, limited research has been conducted on their aging performance. This paper used gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, and the dynamic shear rheometer (DSR) to explore the evolution of chemical and rheological properties of aging HCPMA binders. The study found that the aging of HCPMA is a combination of oxidation of the base asphalt binder and degradation of the SBS polymer, leading to modulus increase and phase angle decrease. The degradation of SBS happened mostly at the beginning and slowed after pressure-aging vessel (PAV) conditioning for 20 h, which resulted in the lowest rutting resistance of HCPMA binders. When SBS content was higher than 7.5%, more than half the SBS polymer remained after 80 h of PAV conditioning. Although the molecular weight of SBS decreased from 230,000 to 70,000 due to degradation, its modification effect was still significant. Moreover, high modification of SBS can retard the oxidation and hardening of base asphalt binder, especially after PAV conditioning for 20 h. Principal component analysis showed that 10 parameters used in this study could be explained by SBS content and asphalt binder aging extent. Based on PCA results, the complex modulus (G∗) and phase angle (δ) of HCPMA binders can be well fitted by the exponential function of SBS content and aging index.Accepted Author ManuscriptPavement Engineerin

    Microwave heating in heterogeneous catalysis: Modelling and design of rectangular traveling-wave microwave reactor

    No full text
    Microwave irradiation can intensify catalytic chemistry by selective and controlled microwave-catalytic packed-bed interaction. However, turning it to reality from laboratory to practical applications is hindered by challenges in the reactor design and scale-up. Here, we present a novel, rectangular traveling-wave microwave reactor (RTMR) and provide an easy-to-handle, 3-step design procedure of such reactor. The multiphysics model couples the electromagnetic field, heat transfer, and fluid dynamics in order to optimize the geometrical parameters and operational conditions for the microwave-assisted heterogeneous catalysis. The results show that the microwave energy input/output ports should be well-positioned and matched; otherwise, it would significantly decrease energy efficiency. In terms of microwave transmission, the RTMR presents a mix between the standing wave and the traveling-wave systems. Gas space velocity and input temperature significantly affect the temperature profile, and gas–solid temperature can present no significant difference under certain gas–solid contact.Intensified Reaction and Separation SystemsComplex Fluid Processin

    Data Compression versus Signal Fidelity Trade-off in Wired-OR ADC Arrays for Neural Recording

    No full text
    This paper investigates the efficacy of a wired-OR compressive readout architecture for neural recording, which enables simultaneous data compression of action potential signals for high channel count electrode arrays. We consider a range of wiring configurations to assess the trade-offs between compression ratio and various task-specific signal fidelity metrics. We consider the fidelity in threshold crossing detection, spike assignment, and waveform estimation, and find that for an event SNR of 7-10 the readout captures at least 80% of the spike waveforms at ∼150x data compression.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Bio-Electronic
    corecore