41 research outputs found

    Isotopic Application in High Saline Conditions

    Get PDF
    Evaporite minerals record the hydrogeochemical conditions in which they precipitated. And therefore they can be used to reconstruct the paleoclimate and paleoenvironments. Evaporite minerals are also major sources of industrial minerals including gypsum, halite, borates, lithium concentrates, and others. Because of their scientific significance and economic importance, evaporite minerals and their isotopic hydrochemical processes linked to their formation have been the focus of many geologists and paleoclimatologists. This chapter will discuss the application of isotopes of hydrogen, oxygen, sulfur, strontium, and boron in saline conditions. This will include the following: the δ18O and δD of hydrated water of gypsum and their paleoclimate since 2.2 Ma in the Qaidam Basin, NE Tibetan Plateau; the δ18O and δD of the interlayer water of clay minerals in salar lacustrine sediments; and the 87Sr/86Sr, δ34S, and δ11B of halite from evaporite deposits in Khorat Plateau, Laos, and Yunnan and their application in the origins of brine

    Using elemental chemostratigraphy on Mid-Late Frasnian platform-top successions from the Lennard Shelf outcrops, Canning Basin, Western Australia.

    Get PDF
    High-resolution chronostratigraphic correlation using elemental chemostratigraphy in platform carbonates is typically difficult to achieve. Here, elemental chemostratigraphy is used to correlate between two platform-top, carbonate-dominated field sections from the narrow Lennard Shelf that existed on the NE margin of the Canning Basin, Western Australia, during the mid–late Frasnian. The correlation, constrained by magnetic polarity reversals and physical ground truthing, is based on recognition of distinctive cyclical ‘‘stacking patterns’’ defined by changes in concentrations of the trace element zirconium (Zr). Zr concentrations are controlled by the amount of the heavy mineral zircon in the sediments, which is derived from a terrigenous source and is diagenetically very stable. The stacking patterns in the lower part of the study sections display gradually upward-increasing values of Zr to a maximum, followed by an almost immediate fall to a minimum. In the upper part of the study interval, the cycles are more symmetrical, with both gradually increasing and decreasing portions. The point at which the change in Zr stacking pattern occurs in the two sections is synchronous and occurs in association with a supersequence maximum flooding surface. The correlation based on maximum and minimum Zr values throughout the two sections is demonstrated to be chronostratigraphic by comparison with correlations based upon paleomagnetism and physical ground truthing. When element ratios commonly used as provenance and paleoclimate proxies are plotted, the variations between closely spaced samples are greater than any systematic variations throughout the study intervals. Therefore, no isochemical chemozones can be defined, implying that during deposition of the study intervals, there were no long-lived changes in sediment provenance or paleoclimate that the elemental chemistry can detect. The work presented here shows that the standard approach of defining isochemical chemozones for chemostratigraphic correlation is not always appropriate. However, an approach using cyclical changes in elemental variables for chemostratigraphic correlation between two closely spaced sections is chronostratigraphically valid. The greater challenge is in application of the same approach to more widely spaced sections, potentially in different facies of a carbonate setting

    Integrated stratigraphic correlation of Upper Devonian platform-to-basin carbonate sequences, Lennard Shelf, Canning Basin, Western Australia: advances in carbonate margin-to-slope sequence stratigraphy and stacking patterns

    Get PDF
    High-resolution, time-significant correlations are integral to meaningful stratigraphic frameworks in depositional systems, but may be difficult to achieve using traditional sequence stratigraphic or biostratigraphic approaches alone, particularly in geologically complex settings. In steep, reefal carbonate margin-to-slope systems, such correlations are essential to unravel shelf-to-basin transitions, characterize strike variability, and develop predictive sequence stratigraphic models – concepts which are currently poorly understood in these heterogeneous settings. The Canning Basin Chronostratigraphy Project (CBCP) integrates multiple independent datasets (including biostratigraphy, magnetostratigraphy, stable isotope chemostratigraphy, and sequence stratigraphy) extracted from Upper Devonian (Frasnian and Famennian) reefal platform exposures along the Lennard Shelf, Canning Basin, Western Australia. These were used to generate a well-constrained stratigraphic framework and shelf-to-basin composite reconstruction of the carbonate system. The resultant integrated framework allows for unprecedented analysis of carbonate margin-to-slope heterogeneity, depositional architecture, and sequence stratigraphy along the Lennard Shelf. Systems tract architecture, facies partitioning, and stacking patterns of margin to lower-slope environments were assessed for six composite-scale sequences that form part of a transgressive-to-regressive supersequence and span the Frasnian-Famennian (F-F) biotic crisis. Variations are apparent in margin styles, foreslope facies proportions, dominant resedimentation processes, downslope contributing sediment factories, and vertical rock successions, related to hierarchical accommodation signals and ecological changes associated with F-F boundary. We present these results in the form of carbonate margin-to-basin sequence stratigraphic models and associations that link seismic-scale architecture to fine-scale facies heterogeneity. These models provide a predictive foundation for characterization of steep-sided flanks of reefal carbonate platform systems that is useful for both industry and academia. This study emphasizes the utility of an integrated stratigraphic approach and the insights gained from better-constrained facies and stratal architecture analysis; insights that were not achievable with traditional sequence stratigraphic or biostratigraphic techniques alone

    Paleomagnetic insights into the Neogene evolution of the Guide and Jiuxi Basins, NE Tibetan Plateau.

    Full text link
    One of the major hotly debated issues in current geo-science studies is the evolution of the Tibetan Plateau, because the mechanisms and processes by which the plateau reached its present configuration remain unclear. Two end models exist for the uplift of the Tibetan Plateau, each of them seeking confirmation from a still inadequate database. Our studies yield magnetostratigraphic data from the Guide and the Jiuxi Basins, northeastern Tibetan Plateau, which provide detailed age constraints on the Neogene sedimentary infilling of the two basins, and aid in increasing our understanding of the evolution of the region. We find that the formation of the two basins began as early as the Oligocene, followed by complex multiple tectonic deformation and uplift processes. Significant and repeated uplifts began around Late Miocene, and increased in the Pliocene after 3.6 Ma. We believe that the deformation history within the northeastern Tibetan Plateau is more complex than simple northeastward thrust propagation resulting Plio-Quaternary uplift. Paleomagnetic declinations reveal diachronous rotations of the NE Tibetan Plateau and show that the Guide Basin has rotated clockwise ∼25° during the Mid-Miocene, and the Longzhong Basin has rotated clockwise ∼30° before 29Ma, whereas the Jiuxi Basin rotated counterclockwise by >15° during 8.5--3.6Ma. The deformation history of the NE Tibetan Plateau evidently impacted different basins at different times. The observed mean inclinations within the entire NE Tibetan Plateau are 10--30° shallower than expected, but they can be corrected by a recently proposed method that uses the elongation of the distributions of directions as a measure of inclination shallowing. We therefore conclude that post-deformation compaction is the main cause of inclination shallowing in the NE Tibetan Plateau.Ph.D.Earth SciencesGeologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/125605/2/3208320.pd

    Paleomegnetic of basaltic sequenzes from DSDP Site 462 in the Nauru Basin

    No full text
    The voluminous volcanic eruptions in the Nauru Basin, Western Pacific, have long been regarded as important research targets for tectonic history of the Pacific Plate and for the widespread Cretaceous volcanic activity in the Western Pacific. The Nauru Basin volcanic rocks were recovered at Site 462 by Deep Sea Drilling Project (DSDP) Legs 61 and 89, where more than 600 m of lavas and sills were drilled, thereby making it the deepest penetration into crust of Cretaceous age in the Pacific Ocean. For paleomagnetism, this section represents a unique possibility for averaging out secular variation to obtain a reliable paleolatitude estimate. However, previous paleomagnetic studies have only been subjected to alternating field (AF) demagnetization on several core samples, thus, unable to provide comprehensive understanding on the paleolatitude of the basin. The work reported here aims to determine the Cretaceous paleomagnetic paleolatitude for the Pacific Plate and define the magnetostratigraphy for the basaltic sections drilled in the Nauru Basin. A total of 391 basaltic rock samples were carefully re-sampled from DSDP Sites 462 and 462A. Stepwise thermal and AF demagnetizations have isolated characteristic components in the majority of the samples. The most important findings from this study include: (1) Two normal and one reversed polarity intervals are identified in Site 462, and six normal and six reversed polarity intervals are found in Site 462A, although possible erroneous markings of the opposite azimuth for some reversed polarity cores during the DSDP coring cannot be completely ruled out. (2) Based on previous radiometric ages, the magnetostratigraphic correlations with the Geomagnetic Polarity Time Scale (GPTS) indicate that the lower-basaltic flow unit in Site 462A began to erupt at least before 130 Ma. No correlation is available for the upper-sill unit. (3) Paleosecular variation for the lower-flow unit has been sufficiently averaged out; whereas bias may exist for that of the upper-sill unit; (4) The calculated mean inclination of ~50° for the lower-flow unit yields a paleolatitude of 30.8°S for the Nauru Basin at the time of emplacement. This value is well to the north of suggested location in plate reconstruction models, suggesting that there has been a significant amount of apparent polar wander of the Nauru Basin and Pacific plate since 130 Ma. In addition, the paleolatitude for the Nauru Basin is ~7° further south and the basin's age is more than 10 my older than those of the Ontong Java Plateau (OJP), which suggest that the volcanic eruptions of the lower flows in the Nauru Basin are unlikely related to the emplacement of the Ontong Java Plateau

    Remagnetization of the Jurassic limestones in the Eastern Qiangtang Terrane (Tibetan Plateau, China): Implications for the India-Eurasia collision

    Get PDF
    The Tibetan Plateau is composed of multiple accreted terranes, including (from south to north) the Tethyan Himalaya, the Lhasa, the Qiangtang, the Songpan-Ganzi and the Qaidam-Qilian terranes. The drift history of the Qiangtang Terrane and the timing of the Lhasa–Qiangtang collision are under debate. To contribute to this topic, we paleomagnetically investigate the Middle-Upper Jurassic limestones of the Yanshiping Group in the Zaduo area (32.5°N, 95.2°E), in the Eastern Qiangtang Terrane (Tibetan Plateau, China). A major challenge in paleomagnetism is the possibility of remagnetization that interferes with paleogeographic reconstructions. In this study, both thermal and alternating field demagnetizations were carried out to isolate the characteristic remanent magnetization (ChRM). Despite the positive reversals test, rock magnetic information points to a remagnetized ChRM that resides in stable single-domain (SSD) magnetite grains with cogenetic superparamagnetic (SP) particles. The co-occurreance of SSD and SP magnetites generates distinct rock-magnetic properties often refer to as the ‘remagnetized fingerprint’ in limestones. This remagnetization process is also manifested by the widespread occurrence of gypsum veinlets in the limestones. The site-mean direction of the 12 sites after tilt-correction is Ds = 30.6°, Is = 35.6°, κs = 182.9, α95 = 3.2°, corresponding to a palaeolatitude of ∼19.7°± 2.8°N for the study area. The corresponding palaeopole (59.8°N, 202.7°E with A95 = 2.8°) points to an NRM acquired after the India–Eurasia collision. The original sediments were likely anoxic because of the high organic carbon fluxes that prevailed during their deposition. After the India–Eurasia collision, it is envisaged that conditions became more oxic, giving rise to oxidation of iron sulphides to authigenic magnetite and the CRM acquisition. The Zaduo area in the Eastern Qiangtang Terrane has experienced ∼15.7° ± 3.2° (∼1740 ± 350 km) of latitudinal crustal shortening since the Eocene. In addition, the clockwise rotation responding to the India–Eurasia collision is also detected in the Zaduo area
    corecore