17,109 research outputs found
Porous zirconia scaffold modified with mesoporous bioglass coating
Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute as its high mechanical strength. However, porous YSZ bodies are biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance the bioactivity. In this study, the porous zirconia scaffolds were prepared by infiltration of Acrylonitrile Butadiene Styrene (ABS) scaffolds with 3 mol% yttria stabilized zirconia slurry. After sintering, a method of sol-gel dip coating was involved to make coating layer of mesoporous bioglass (MBGs). The porous zirconia without the coating had high porosities of 60.1% to 63.8%, and most macropores were interconnected with pore sizes of 0.5-0.8mm. The porous zirconia had compressive strengths of 9.07-9.90MPa. Moreover, the average coating thickness was about 7μm. There is no significant change of compressive strength for the porous zirconia with mesoporous biogalss coating. The bone marrow stromal cell (BMSC) proliferation test showed both uncoated and coated zirconia scaffolds have good biocompatibility. The scanning electron microscope (SEM) micrographs and the compositional analysis graphs demonstrated that after testing in the simulated body fluid (SBF) for 7 days, the apatite formation occurred on the coating surface. Thus, porous zirconia-based ceramics were modified with bioactive coating of mesoporous bioglass for potential biomedical applications
Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis
Spectral Clustering (SC) is a widely used data clustering method which first
learns a low-dimensional embedding of data by computing the eigenvectors of
the normalized Laplacian matrix, and then performs k-means on to get
the final clustering result. The Sparse Spectral Clustering (SSC) method
extends SC with a sparse regularization on by using the block
diagonal structure prior of in the ideal case. However, encouraging
to be sparse leads to a heavily nonconvex problem which is
challenging to solve and the work (Lu, Yan, and Lin 2016) proposes a convex
relaxation in the pursuit of this aim indirectly. However, the convex
relaxation generally leads to a loose approximation and the quality of the
solution is not clear. This work instead considers to solve the nonconvex
formulation of SSC which directly encourages to be sparse. We propose
an efficient Alternating Direction Method of Multipliers (ADMM) to solve the
nonconvex SSC and provide the convergence guarantee. In particular, we prove
that the sequences generated by ADMM always exist a limit point and any limit
point is a stationary point. Our analysis does not impose any assumptions on
the iterates and thus is practical. Our proposed ADMM for nonconvex problems
allows the stepsize to be increasing but upper bounded, and this makes it very
efficient in practice. Experimental analysis on several real data sets verifies
the effectiveness of our method.Comment: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
201
OPE of the stress tensors and surface operators
We demonstrate that the divergent terms in the OPE of a stress tensor and a
surface operator of general shape cannot be constructed only from local
geometric data depending only on the shape of the surface. We verify this
holographically at d=3 for Wilson line operators or equivalently the twist
operator corresponding to computing the entanglement entropy using the
Ryu-Takayanagi formula. We discuss possible implications of this result.Comment: 20 pages, no figur
- …