1,588 research outputs found

    User evaluation of a market-based recommender system

    No full text
    Recommender systems have been developed for a wide variety of applications (ranging from books, to holidays, to web pages). These systems have used a number of different approaches, since no one technique is best for all users in all situations. Given this, we believe that to be effective, systems should incorporate a wide variety of such techniques and then some form of overarching framework should be put in place to coordinate them so that only the best recommendations (from whatever source) are presented to the user. To this end, in our previous work, we detailed a market-based approach in which various recommender agents competed with one another to present their recommendations to the user. We showed through theoretical analysis and empirical evaluation with simulated users that an appropriately designed marketplace should be able to provide effective coordination. Building on this, we now report on the development of this multi-agent system and its evaluation with real users. Specifically, we show that our system is capable of consistently giving high quality recommendations, that the best recommendations that could be put forward are actually put forward, and that the combination of recommenders performs better than any constituent recommende

    Architectural Support for Optimizing Huge Page Selection Within the OS

    Get PDF
    © 2023 Copyright held by the owner/author(s). This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted version of a Published Work that appeared in final form in 56th ACM/IEEE International Symposium on Microarchitecture (MICRO), Toronto, Canada. To access the final edited and published work see https://doi.org/10.1145/3613424.3614296Irregular, memory-intensive applications often incur high translation lookaside buffer (TLB) miss rates that result in significant address translation overheads. Employing huge pages is an effective way to reduce these overheads, however in real systems the number of available huge pages can be limited when system memory is nearly full and/or fragmented. Thus, huge pages must be used selectively to back application memory. This work demonstrates that choosing memory regions that incur the most TLB misses for huge page promotion best reduces address translation overheads. We call these regions High reUse TLB-sensitive data (HUBs). Unlike prior work which relies on expensive per-page software counters to identify promotion regions, we propose new architectural support to identify these regions dynamically at application runtime. We propose a promotion candidate cache (PCC) that identifies HUB candidates based on hardware page table walks after a lastlevel TLB miss. This small, fixed-size structure tracks huge pagealigned regions (consisting of base pages), ranks them based on observed page table walk frequency, and only keeps the most frequently accessed ones. Evaluated on applications of various memory intensity, our approach successfully identifies application pages incurring the highest address translation overheads. Our approach demonstrates that with the help of a PCC, the OS only needs to promote 4% of the application footprint to achieve more than 75% of the peak achievable performance, yielding 1.19-1.33× speedups over 4KB base pages alone. In real systems where memory is typically fragmented, the PCC outperforms Linux’s page promotion policy by 14% (when 50% of total memory is fragmented) and 16% (when 90% of total memory is fragmented) respectively

    Higgs algebraic symmetry of screened system in a spherical geometry

    Full text link
    The orbits and the dynamical symmetries for the screened Coulomb potentials and isotropic harmonic oscillators have been studied by Wu and Zeng [Z. B. Wu and J. Y. Zeng, Phys. Rev. A 62,032509 (2000)]. We find the similar properties in the responding systems in a spherical space, whose dynamical symmetries are described by Higgs Algebra. There exists a conserved aphelion and perihelion vector, which, together with angular momentum, constitute the generators of the geometrical symmetry group at the aphelia and perihelia points (r˙=0)(\dot{r}=0).Comment: 8 pages, 1 fi

    Variance of transmitted power in multichannel dissipative ergodic structures invariant under time reversal

    Full text link
    We use random matrix theory (RMT) to study the first two moments of the wave power transmitted in time reversal invariant systems having ergodic motion. Dissipation is modeled by a number of loss channels of variable coupling strength. To make a connection with ultrasonic experiments on ergodic elastodynamic billiards, the channels injecting and collecting the waves are assumed to be negligibly coupled to the medium, and to contribute essentially no dissipation. Within the RMT model we calculate the quantities of interest exactly, employing the supersymmetry technique. This approach is found to be more accurate than another method based on simplifying naive assumptions for the statistics of the eigenfrequencies and the eigenfunctions. The results of the supersymmetric method are confirmed by Monte Carlo numerical simulation and are used to reveal a possible source of the disagreement between the predictions of the naive theory and ultrasonic measurements.Comment: 10 pages, 2 figure

    Poisson homology of r-matrix type orbits I: example of computation

    Full text link
    In this paper we consider the Poisson algebraic structure associated with a classical rr-matrix, i.e. with a solution of the modified classical Yang--Baxter equation. In Section 1 we recall the concept and basic facts of the rr-matrix type Poisson orbits. Then we describe the rr-matrix Poisson pencil (i.e the pair of compatible Poisson structures) of rank 1 or CPnCP^n-type orbits of SL(n,C)SL(n,C). Here we calculate symplectic leaves and the integrable foliation associated with the pencil. We also describe the algebra of functions on CPnCP^n-type orbits. In Section 2 we calculate the Poisson homology of Drinfeld--Sklyanin Poisson brackets which belong to the rr-matrix Poisson family

    Active Learning Training with Mathematics Tools at SD HKBP Pembangunan 3 Medan

    Get PDF
    Education is an attempt by the Government to increase the country's potential to be able to compete with other countries that are experiencing very rapid development. The development of education will have an influence on the life of the local community, that is, it can affect various aspects of life, be it social, economic, cultural, religious, language and also the environment. The extent of the influence of educational development on aspects of life can be studied independently. Besides that, education also plays a major role in expanding employment opportunities, encouraging activities of supporting industries, introducing natural and cultural beauty that is inseparable from a sense of increasing brotherhood in the national and international environment. This is because education itself creates multiple economic impacts, namely direct, indirect, and secondary impacts, which provide opportunities for the growth of businesses and the role of local communities in the education sector. This research will discuss about Active Learning Training with Mathematics Tools at SDS HKBP Pembangunan 3 Medan. The result achieved is that schools are able to provide effective services online in the face of changing times caused by Covid-19 and can provide more information regarding the location of tourist objects that will be traversed by local and foreign tourists

    R-parity violation effect on the top-quark pair production at linear colliders

    Full text link
    We investigate in detail the effects of the R-parity lepton number violation in the minimal supersymmetric standard model (MSSM) on the top-quark pair production via both ee+e^--e^+ and γγ\gamma-\gamma collision modes at the linear colliders. We find that with the present experimental constrained /R\rlap/{R} parameters, the effect from /R\rlap/{R} interactions on the processes e+ettˉe^+e^-\to t\bar{t} and e+eγγttˉe^+e^- \to \gamma\gamma \to t\bar{t} could be significant and may reach -30% and several percent, respectively. Our results show that the /R\rlap/{R} effects are sensitive to the c.m.s. energy and the relevant /R\rlap/{R} parameters. However, they are not sensitive to squark and slepton masses when mq~400GeVm_{\tilde{q}} \geq 400 GeV (or ml~300GeVm_{\tilde{l}} \geq 300 GeV) and are almost independent on the tanβ\tan\betaComment: Accepted by Phys.Rev.

    Chiral Perturbation Theory for SU(3) Breaking in Heavy Meson Systems

    Full text link
    The SU(3) breaking effects due to light quark masses on heavy meson masses, decay constants (FD,FDsF_{D}, F_{D_{s}}) and the form factor for semileptonic BD()lνˉl\overline{B}\rightarrow D^{(\ast)} l\bar{\nu}_{l} transitions are formulated in chiral perturbation theory, using a heavy meson effective Lagrangian and expanding in inverse powers of the heavy meson mass. To leading order in this expansion, the leading chiral logarithms and the required counterterms are determined. At this level, a non-analytic correction to the mass splittings of O(p3){\cal O}(p^3) appears, similar the the one found in light baryons. The correction to FDs/FDF_{D_{s}}/F_{D} is roughly estimated to be of the order of 10%10\% and, therefore, experimentally accessible, while the correction to the form factor is likely to be substantially smaller. We explicitly check that the heavy quark symmetry is preserved by the chiral loops.Comment: 21 page

    High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers

    Get PDF
    Van der Waals coefficients for the heteronuclear alkali-metal dimers of Li, Na, K, Rb, Cs, and Fr are calculated using relativistic ab initio methods augmented by high-precision experimental data. We argue that the uncertainties in the coefficients are unlikely to exceed about 1%.Comment: 11 pages, 2 figs, graphicx.st
    corecore