41,713 research outputs found

    Two-Loop Four-Gluon Amplitudes in N=4 Super-Yang-Mills

    Full text link
    Using cutting techniques we obtain the two-loop N=4 super-Yang-Mills helicity amplitudes for four-gluon scattering in terms of scalar integral functions. The N=4 amplitudes are considerably simpler than corresponding QCD amplitudes and therefore provide a testing ground for exploring two-loop amplitudes. The amplitudes are constructed directly in terms of gauge invariant quantities and therefore remain relatively compact throughout the calculation. We also present a conjecture for the leading color four-gluon amplitudes to all orders in the perturbative expansion.Comment: Latex, 13 pages, 9 figures, minor changes to signs in eq.(14

    A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2_2Re2_2O7_7

    Get PDF
    Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd2_2Re2_2O7_7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd2_2Re2_2O7_7 and induces a parity-breaking lattice distortion as a secondary order.Comment: 9 pages main text, 4 figures, 10 pages supplementary informatio

    The momentum flux probability distribution function for ion-temperature-gradient turbulence

    Get PDF
    There has been overwhelming evidence that coherent structures play a critical role in determining the overall transport in a variety of systems. We compute the probability distribution function (PDF) tails of momentum flux and heat flux in ion-temperature-gradient turbulence, by taking into account the interaction among modons, which are assumed to be coherent structures responsible for bursty and intermittent events, contributing to the PDF tails. The tail of PDF of momentum flux R = 〈vxvy〉 is shown to be exponential with the form exp{−ξR3/2}, which is broader than a Gaussian, similar to what was found in the previous local studies. An analogous expression with the same functional dependence is found for the PDF tails of heat flux. Furthermore, we present a detailed numerical study of the dependence of the PDF tail on the temperature and density scale lengths and other physical parameters through the coefficient ξ
    • …
    corecore