33 research outputs found

    On Pending Interest Table in Named Data Networking

    No full text
    Internet has witnessed its paramount function transition from hostto-host communication to content dissemination. Named Data Networking (NDN) and Content-Centric Networking (CCN) emerge as a clean slate network architecture to embrace this shift. Pending Interest Table (PIT) in NDN/CCN keeps track of the Interest packets that are received but yet un-responded, which brings NDN/CCN significant features, such as communicating without the knowledge of source or destination, loop and packet loss detection, multipath routing, better security, etc. This paper presents a thorough study of PIT for the first time. Using an approximate, application-driven translation of current IPgenerated trace to NDN trace, we firstly quantify the size and access frequencies of PIT. Evaluation results on a 20 Gbps gateway trace show that the corresponding PIT contains 1.5 M entries, and the lookup, insert and delete frequencies are 1.4 M/s, 0.9 M/s and 0.9 M/s, respectively. Faced with this challenging issue and to make PIT more scalable, we further propose a Name Component Encoding (NCE) solution to shrink PIT size and accelerate PIT access operations. By NCE, the memory consumption can be reduced by up to 87.44%, and the access performance significantly advanced, satisfying the access speed required by PIT. Moreover, PIT exhibits good scalability with NCE. At last, we propose to place PIT on (egress channel of) the outgoing line-cards of routers, which meets the NDN design and eliminates the cumbersome synchronization problem among multiple PITs on the line-cards

    Underwater Acoustic Matched Field Imaging Based on Compressed Sensing

    No full text
    Matched field processing (MFP) is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP) model from wave propagation theory by using randomly deployed sensors. In addition, the model’s recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP) algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method

    Scalable Name Lookup in NDN Using Effective Name Component Encoding

    No full text
    Abstract—Name-based route lookup is a key function for Named Data Networking (NDN). The NDN names are hierarchical and have variable and unbounded lengths, which are much longer than IPv4/6 address, making fast name lookup a challenging issue. In this paper, we propose an effective Name Component Encoding (NCE) solution with the following two techniques: (1) A code allocation mechanism is developed to achieve memory-efficient encoding for name components; (2) We apply an improved State Transition Arrays to accelerate the longest name prefix matching and design a fast and incremental update mechanism which satisfies the special requirements of NDN forwarding process, namely to insert, modify, and delete name prefixes frequently. Furthermore, we analyze the memory consumption and time complexity of NCE. Experimental results on a name set containing 3,000,000 names demonstrate that compared with the character trie NCE reduces overall 30% memory. Besides, NCE performs a few millions lookups per second (on an Intel 2.8 GHz CPU), a speedup of over 7 times compared with the character trie. Our evaluation results also show that NCE can scale to accommodate the potential future growth of the name set size

    Wideband sonar imaging via compressed sensing

    No full text
    Conference Name:OCEANS 2014 - Taipei. Conference Address: Taipei, Taiwan. Time:April 7, 2014 - April 10, 2014.In order to solve the contradiction of high azimuth resolution and wide swath in sonar and radar imaging, narrowband compressed sensing (CS) imaging has been studied in depth. This paper studies the wideband sonar imaging method via CS. Wideband CS imaging model is constructed. Scaling and Doppler frequency shift are considered in the model. The effect of wideband signal to traditional narrowband model is analyzed. Wideband CS imaging method is constructed. A modified 1-norm minimization algorithm is proposed. It is shown that it is possible to apply CS to wideband sonar imaging. Numerical experiments are conducted and demonstrates the analysis

    Inhibition of murine bladder cancer cell growth in vitro by photocontrollable siRNA based on upconversion fluorescent nanoparticles.

    No full text
    This study provides a unique approach to activate caged small interfering RNAs (siRNAs) using indirect UV light emitted by the near-infrared (NIR)-to-UV upconversion process to achieve high spatial and temporal gene interference patterns. siRNA molecules against the anti-apoptotic gene survivin was caged by light-sensitive molecules (4,5-dimethoxy-2-nitroacetophenone, DMNPE), which rendered them temporarily non-functional. NIR-to-UV NaYF4:Yb,Tm upconversion nanoparticles (UCPs) served as delivery vehicles and activators of the caged siRNA molecules in murine bladder cancer cells (MB49 cell line). Upconverted UV light at 355 nm was emitted from the NIR-irradiated UCPs, which well coincided with the wavelength needed to uncage DMNPE. Consequently, UV light acted as a switch to uncage the delivered siRNA molecule, thereby rendering fully functional for exerting its therapeutic effect in the bladder cancer cells. To achieve the highest RNA interference efficiency, conditions such as time after cellular uptake, excitation time, UCPs concentration and laser power were optimized. Results showed that 200 µg/mL nanoparticle concentration combined with 12 h incubation with MB49 cells and excitation with NIR laser at 100 mW power for 15 min provided the ideal interference efficiency and strongest induction of MB49 cell death. Our findings demonstrate the potential biological application of UCPs in treating bladder cancer by a novel therapeutic approach
    corecore