10,049 research outputs found

    Fish Lateral Line Neurophysiological and Neurobehavioral Responses as a Sensitive Water Quality Monitoring System

    Get PDF
    Cadmium is a heavy metal ion that can cause deleterious effects on aquatic animals. This study uses both electrophysiological recordings from lateral line nerves and videotaping of schooling behavior to investigate the effects of cadmium exposure on fish. The fathead minnows were exposed to cadmium at a concentration of 450 μg/1 over a 24-hr period. Extracellular recording with a silver hook electrode was used to record compound action potentials from the lateral lines of control and experimental fish. After a short time exposure (24 hr) to cadmium ions, all of the electrophysiological activities of the lateral line nerves were suppressed. However, after a 10-day recovery in clean water, the function of the lateral line nerves was regained. Schooling behavior observed under lighted conditions showed no significant difference (in terms of percentage of time forming a school) between control and experimental fish. Schooling behavior, however, was completely lost for experimental fish when observed under complete darkness but it was regained after a 10-day recovery in clean water. The current study shows that both electrophysiological recording from the lateral line nerve and observation of schooling behavior can be used as effective assay methods for cadmium toxicity studies

    Exact solution of gyration radius of individual's trajectory for a simplified human mobility model

    Full text link
    Gyration radius of individual's trajectory plays a key role in quantifying human mobility patterns. Of particular interests, empirical analyses suggest that the growth of gyration radius is slow versus time except the very early stage and may eventually arrive to a steady value. However, up to now, the underlying mechanism leading to such a possibly steady value has not been well understood. In this Letter, we propose a simplified human mobility model to simulate individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that individual has constant travel speed and inferior limit of time at home and work, we prove that the daily moving area of an individual is an ellipse, and finally get an exact solution of the gyration radius. The analytical solution well captures the empirical observation reported in [M. C. Gonz`alez et al., Nature, 453 (2008) 779]. We also find that, in spite of the heterogeneous displacement distribution in the population level, individuals in our model have characteristic displacements, indicating a completely different mechanism to the one proposed by Song et al. [Nat. Phys. 6 (2010) 818].Comment: 4 pages, 4 figure

    Steady Bell state generation via magnon-photon coupling

    Full text link
    We show that parity-time (PT\mathcal{PT}) symmetry can be spontaneously broken in the recently reported energy level attraction of magnons and cavity photons. In the PT\mathcal{PT}-broken phase, magnon and photon form a high-fidelity Bell state with maximum entanglement. This entanglement is steady and robust against the perturbation of environment, in contrast to the general wisdom that expects instability of the hybridized state when the symmetry is broken. This anomaly is further understood by the compete of non-Hermitian evolution and particle number conservation of the hybridized system. As a comparison, neither PT\mathcal{PT}-symmetry broken nor steady magnon-photon entanglement is observed inside the normal level repulsion case. Our results may open a novel window to utilize magnon-photon entanglement as a resource for quantum technologies.Comment: 5 pages, 4 figure

    Measurement of ultralow injection current to polymethyl-methacrylate film

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Effects of relative orientation of the molecules on electron transport in molecular devices

    Full text link
    Effects of relative orientation of the molecules on electron transport in molecular devices are studied by non-equilibrium Green's function method based on density functional theory. In particular, two molecular devices, with the planer Au7_{7} and Ag3_{3} clusters sandwiched between the Al(100) electrodes are studied. In each device, two typical configurations with the clusters parallel and vertical to the electrodes are considered. It is found that the relative orientation affects the transport properties of these two devices completely differently. In the Al(100)-Au7_7-Al(100) device, the conductance and the current of the parallel configuration are much larger than those in the vertical configuration, while in the Al(100)-Ag3_{3}-Al(100) device, an opposite conclusion is obtained

    Reconsideration of Second Harmonic Generation from neat Air/Water Interface: Broken of Kleinman Symmetry from Dipolar Contribution

    Full text link
    It has been generally accepted that there are significant quadrupolar and bulk contributions to the second harmonic generation (SHG) reflected from the neat air/water interface, as well as common liquid interfaces. Because there has been no general methodology to determine the quadrupolar and bulk contributions to the SHG signal from a liquid interface, this conclusion was reached based on the following two experimental phenomena. Namely, the broken of the macroscopic Kleinman symmetry, and the significant temperature dependence of the SHG signal from the neat air/water interface. However, because sum frequency generation vibrational spectroscopy (SFG-VS) measurement of the neat air/water interface observed no apparent temperature dependence, the temperature dependence in the SHG measurement has been reexamined and proven to be an experimental artifact. Here we present a complete microscopic analysis of the susceptibility tensors of the air/water interface, and show that dipolar contribution alone can be used to address the issue of broken of the macroscopic Kleinman symmetry at the neat air/water interface. Using this analysis, the orientation of the water molecules at the interface can be obtained, and it is consistent with the measurement from SFG-VS. Therefore, the key rationales to conclude significantly quadrupolar and bulk contributions to the SHG signal of the neat air/water interface can no longer be considered as valid as before. This new understanding of the air/water interface can shed light on our understanding of the nonlinear optical responses from other molecular interfaces as well

    Dopant Profile Extraction by Inverse Modeling of Scanning Capacitance Microscopy Using Peak dC/dV

    Get PDF
    Scanning capacitance microscopy (SCM) has proven to be successful for junction delineation. However quantitative dopant profile extraction by SCM still remains a difficult challenge, due to limited understanding of relevant physics especially at p-n junction, as well as difficulties to accurately quantify all parameters in modeling. In this paper we present a new procedure, the use of peak dC/dV at every spatial point, for dopant profile extraction. The advantage of such a technique is twofold. First it eliminates problems encountered using a fixed dc bias such as contrast reversal. Second, it also excludes the need to model interface traps. This is because the peak dC/dV value is independent of the presence of interface traps, as demonstrated in our experimental results. Furthermore, based on our understanding of the influence of mobility degradation at p-n junction, we propose that low surface mobility model should be used in simulation so that only the accumulation-to-depletion dC/dV is extracted
    corecore